What's the most efficient way to draw this region?Why this region is bad?How to plot this region?How to draw a picture like this?Efficient way to get adjacency information from MeshRegionWhy this “is not a correctly specified region”?Draw bounding region by list of points

How do you translate "Don't Fear the Reaper" into Latin?

Is there a practical way of making democratic-like system skewed towards competence?

Delete line if next line is the same

5v home network

How can my hammerspace safely "decompress"?

What is the ring of invariants under the action of an arbitrary subgroup of the symmetric group?

UK PM is taking his proposal to EU but has not proposed to his own parliament - can he legally bypass the UK parliament?

How to remind myself to lock my doors

How do I weigh a kitchen island to determine what size castors to get?

What is this dial on my old film camera for?

Why is lying to Congress a crime?

How is the corresponding author on a (math) paper typically chosen?

Can you decide not to sneak into a room after seeing your roll?

Are there any rules around when something can be described as "based on a true story"?

Could someone please translate this code into some mathematical notation?

What are the consequences for downstream actors of redistributing a work under a wider CC license than the copyright holder authorized?

Disrespectful employee going above my head and telling me what to do. I am his manager

Count number of different name in a file

Can the bass be used instead of drums?

Fantasy novel/series with young man who discovers he can use magic that is outlawed

'Kukhtarev's model' or 'THE Kukhtarev's model'?

How should I tell a professor the answer to something he doesn't know?

Is there a general way of solving the Maxwell equations?

C4_4 Reflection!



What's the most efficient way to draw this region?


Why this region is bad?How to plot this region?How to draw a picture like this?Efficient way to get adjacency information from MeshRegionWhy this “is not a correctly specified region”?Draw bounding region by list of points






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty
margin-bottom:0;

.everyonelovesstackoverflowposition:absolute;height:1px;width:1px;opacity:0;top:0;left:0;pointer-events:none;








5














$begingroup$


enter image description here



Viral question on YouTube. But let me start by saying the guy got it wrong. We don't do such things at the age of 11, we do this question about Year 11 (aged 14/15, 16 for some).



I want to draw the following.
enter image description here



Tried this



f1 = 10 - Sqrt[10^2 - x^2];
f2 = 5 - Sqrt[5^2 - (x - 5)^2];
f3 = 5 + Sqrt[5^2 - (x - 5)^2];


And



r00 = Graphics[EdgeForm[Thick], Transparent, Rectangle[0, 0, 10, 10]]
r0 = Plot[f1, f2, f3, x, 0, 10, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]
r1 = Plot[f1, f2, f3, x, 6.25 - 1.25 Sqrt[7], 6.25 + 1.25 Sqrt[7], Filling -> 1 -> 2, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]
r2 = Plot[f1, f2, f3, x, 6.25 + 1.25 Sqrt[7], 10, Filling -> 3 -> 2, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]

Show[r00, r0, r1, r2]


enter image description here



Surely there is a simpler way to do this?










share|improve this question











$endgroup$






















    5














    $begingroup$


    enter image description here



    Viral question on YouTube. But let me start by saying the guy got it wrong. We don't do such things at the age of 11, we do this question about Year 11 (aged 14/15, 16 for some).



    I want to draw the following.
    enter image description here



    Tried this



    f1 = 10 - Sqrt[10^2 - x^2];
    f2 = 5 - Sqrt[5^2 - (x - 5)^2];
    f3 = 5 + Sqrt[5^2 - (x - 5)^2];


    And



    r00 = Graphics[EdgeForm[Thick], Transparent, Rectangle[0, 0, 10, 10]]
    r0 = Plot[f1, f2, f3, x, 0, 10, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]
    r1 = Plot[f1, f2, f3, x, 6.25 - 1.25 Sqrt[7], 6.25 + 1.25 Sqrt[7], Filling -> 1 -> 2, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]
    r2 = Plot[f1, f2, f3, x, 6.25 + 1.25 Sqrt[7], 10, Filling -> 3 -> 2, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]

    Show[r00, r0, r1, r2]


    enter image description here



    Surely there is a simpler way to do this?










    share|improve this question











    $endgroup$


















      5












      5








      5





      $begingroup$


      enter image description here



      Viral question on YouTube. But let me start by saying the guy got it wrong. We don't do such things at the age of 11, we do this question about Year 11 (aged 14/15, 16 for some).



      I want to draw the following.
      enter image description here



      Tried this



      f1 = 10 - Sqrt[10^2 - x^2];
      f2 = 5 - Sqrt[5^2 - (x - 5)^2];
      f3 = 5 + Sqrt[5^2 - (x - 5)^2];


      And



      r00 = Graphics[EdgeForm[Thick], Transparent, Rectangle[0, 0, 10, 10]]
      r0 = Plot[f1, f2, f3, x, 0, 10, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]
      r1 = Plot[f1, f2, f3, x, 6.25 - 1.25 Sqrt[7], 6.25 + 1.25 Sqrt[7], Filling -> 1 -> 2, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]
      r2 = Plot[f1, f2, f3, x, 6.25 + 1.25 Sqrt[7], 10, Filling -> 3 -> 2, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]

      Show[r00, r0, r1, r2]


      enter image description here



      Surely there is a simpler way to do this?










      share|improve this question











      $endgroup$




      enter image description here



      Viral question on YouTube. But let me start by saying the guy got it wrong. We don't do such things at the age of 11, we do this question about Year 11 (aged 14/15, 16 for some).



      I want to draw the following.
      enter image description here



      Tried this



      f1 = 10 - Sqrt[10^2 - x^2];
      f2 = 5 - Sqrt[5^2 - (x - 5)^2];
      f3 = 5 + Sqrt[5^2 - (x - 5)^2];


      And



      r00 = Graphics[EdgeForm[Thick], Transparent, Rectangle[0, 0, 10, 10]]
      r0 = Plot[f1, f2, f3, x, 0, 10, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]
      r1 = Plot[f1, f2, f3, x, 6.25 - 1.25 Sqrt[7], 6.25 + 1.25 Sqrt[7], Filling -> 1 -> 2, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]
      r2 = Plot[f1, f2, f3, x, 6.25 + 1.25 Sqrt[7], 10, Filling -> 3 -> 2, Frame -> True, AspectRatio -> 1, PlotRange -> -0.5, 10.5, -0.5, 10.5]

      Show[r00, r0, r1, r2]


      enter image description here



      Surely there is a simpler way to do this?







      regions filling drawing scidraw






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question



      share|improve this question








      edited 5 hours ago









      MelaGo

      3,1661 gold badge2 silver badges10 bronze badges




      3,1661 gold badge2 silver badges10 bronze badges










      asked 11 hours ago









      CasperYCCasperYC

      3646 bronze badges




      3646 bronze badges























          3 Answers
          3






          active

          oldest

          votes


















          8
















          $begingroup$

          f1h = HoldForm[10 - Sqrt[10^2 - x^2]];
          f1 = f1h // ReleaseHold;
          f2h = HoldForm[5 - Sqrt[5^2 - (x - 5)^2]];
          f2 = f2h // ReleaseHold;
          f3h = HoldForm[5 + Sqrt[5^2 - (x - 5)^2]];
          f3 = f3h // ReleaseHold;


          The x values for the curve intersections are



          x1, x2 = x /. Solve[f1 == #, x][[1]] & /@ f2, f3;


          The point coordinates for the curve intersections are



          pt1, pt2 = (#, f1 /. x -> # // FullSimplify) & /@ x1, x2;

          reg1 = ImplicitRegion[f1 < y < 10 && x > 0, x, y];
          reg2 = ImplicitRegion[f2 < y < f3, x, y];

          Show[
          Region[
          regDiff = RegionDifference[reg2, reg1]],
          Plot[f1, f2, f3, x, 0, 10,
          PlotStyle ->
          Orange, AbsoluteThickness[4],
          Purple, AbsoluteThickness[4],
          Darker@Green, AbsoluteThickness[4]],
          Epilog ->
          Text[Style[x1, 14, Bold], x1, 2, 0, -1],
          Arrow[pt1, x1, 2],
          Text[Style[x2, 14, Bold], 7.75, pt2[[2]], 1, 0],
          Arrow[pt2, 7.75, pt2[[2]]],
          Text[Style[f1h, 14, Bold], 10, 8, -1, 0],
          Text[Style[f2h, 14, Bold], 9.5, 1.5, -1, 0],
          Text[Style[f3h, 14, Bold], 5, 11],
          Red, AbsolutePointSize[7],
          Point[pt1, pt2],
          Ticks -> 5, 10, 5, 10,
          PlotRange -> -1, 14, -1, 12,
          Axes -> True]


          enter image description here



          The area of the shaded region is



          area = Area[regDiff] // FullSimplify

          (* 25/2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)


          The area relative to the smaller circle is



          area/Area[reg2] // N

          (* 0.186378 *)





          share|improve this answer










          $endgroup$






















            5
















            $begingroup$

            One simple way to visualize complicated regions in mathematica



            disk1 = Region[Disk[5, 5, 5]]

            disk2 = Region[Disk[0, 10, 10]]

            disk3 = Region[Disk[10, 0, 10]]

            result = Region[
            RegionUnion[RegionDifference[disk1, disk3],
            RegionDifference[disk1, disk2]]]







            share|improve this answer










            $endgroup$














            • $begingroup$
              RegionDifference nice function!
              $endgroup$
              – CasperYC
              10 hours ago










            • $begingroup$
              Anyway to smooth the "tip"?
              $endgroup$
              – CasperYC
              10 hours ago






            • 1




              $begingroup$
              result = RegionPlot[ RegionUnion[RegionDifference[disk1, disk3], RegionDifference[disk1, disk2]], PlotPoints -> 100]
              $endgroup$
              – OkkesDulgerci
              10 hours ago


















            2
















            $begingroup$

            RegionPlot[
            x^2 + y^2 < 25 [And]
            ((x - 5)^2 + (y + 5)^2 > 100 [Or] (x + 5)^2 + (y - 5)^2 > 100),
            x, -5, 5, y, -5, 5]


            enter image description here



            Or...



            z[w_] := EuclideanDistance[x, y, w 5, -5];
            RegionPlot[
            z[0] < 5 [And] (z[1] > 10 [Or] z[-1] > 10),
            x, -5, 5, y, -5, 5]


            Or...



            z[w_] := (a = (x, y - 5 w, -w)).a;
            RegionPlot[
            z[0] < 25 [And] (z[1] > 100 [Or] z[-1] > 100),
            x, -5, 5, y, -5, 5]


            Or even shorter....



            z[w_, k_] := (a = (x, y - 5 w, -w)).a > 25 k;
            RegionPlot[
            Not[z[0, 1]] [And] (z[1, 4] [Or] z[-1, 4]),
            x, -5, 5, y, -5, 5]


            I would be very impressed if someone uses fewer keystrokes than this in a Region-based solution:



            d[c_, r_:10] := Region[Disk[c, r]];
            RegionDifference[d[5, 5, 5], RegionIntersection[d[0, 10], d[10, 0]]]


            Or...



            d[c_, r_:10] := Region[Disk[c, r]];
            q = 0, 10;
            h = 5, -5;
            RegionDifference[d[q + h, 5], RegionIntersection[d[q], d[q + 2 h]]]


            Or....



            d[c_, r_:10] := Region[Disk[c, r]]; q = 5, 5; h = 5, -5;
            RegionDifference[d[q, 5], RegionIntersection[d[q - h], d[q + h]]]


            Pretty efficient!






            share|improve this answer












            $endgroup$
















              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "387"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );














              draft saved

              draft discarded
















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f207329%2fwhats-the-most-efficient-way-to-draw-this-region%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown


























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              8
















              $begingroup$

              f1h = HoldForm[10 - Sqrt[10^2 - x^2]];
              f1 = f1h // ReleaseHold;
              f2h = HoldForm[5 - Sqrt[5^2 - (x - 5)^2]];
              f2 = f2h // ReleaseHold;
              f3h = HoldForm[5 + Sqrt[5^2 - (x - 5)^2]];
              f3 = f3h // ReleaseHold;


              The x values for the curve intersections are



              x1, x2 = x /. Solve[f1 == #, x][[1]] & /@ f2, f3;


              The point coordinates for the curve intersections are



              pt1, pt2 = (#, f1 /. x -> # // FullSimplify) & /@ x1, x2;

              reg1 = ImplicitRegion[f1 < y < 10 && x > 0, x, y];
              reg2 = ImplicitRegion[f2 < y < f3, x, y];

              Show[
              Region[
              regDiff = RegionDifference[reg2, reg1]],
              Plot[f1, f2, f3, x, 0, 10,
              PlotStyle ->
              Orange, AbsoluteThickness[4],
              Purple, AbsoluteThickness[4],
              Darker@Green, AbsoluteThickness[4]],
              Epilog ->
              Text[Style[x1, 14, Bold], x1, 2, 0, -1],
              Arrow[pt1, x1, 2],
              Text[Style[x2, 14, Bold], 7.75, pt2[[2]], 1, 0],
              Arrow[pt2, 7.75, pt2[[2]]],
              Text[Style[f1h, 14, Bold], 10, 8, -1, 0],
              Text[Style[f2h, 14, Bold], 9.5, 1.5, -1, 0],
              Text[Style[f3h, 14, Bold], 5, 11],
              Red, AbsolutePointSize[7],
              Point[pt1, pt2],
              Ticks -> 5, 10, 5, 10,
              PlotRange -> -1, 14, -1, 12,
              Axes -> True]


              enter image description here



              The area of the shaded region is



              area = Area[regDiff] // FullSimplify

              (* 25/2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)


              The area relative to the smaller circle is



              area/Area[reg2] // N

              (* 0.186378 *)





              share|improve this answer










              $endgroup$



















                8
















                $begingroup$

                f1h = HoldForm[10 - Sqrt[10^2 - x^2]];
                f1 = f1h // ReleaseHold;
                f2h = HoldForm[5 - Sqrt[5^2 - (x - 5)^2]];
                f2 = f2h // ReleaseHold;
                f3h = HoldForm[5 + Sqrt[5^2 - (x - 5)^2]];
                f3 = f3h // ReleaseHold;


                The x values for the curve intersections are



                x1, x2 = x /. Solve[f1 == #, x][[1]] & /@ f2, f3;


                The point coordinates for the curve intersections are



                pt1, pt2 = (#, f1 /. x -> # // FullSimplify) & /@ x1, x2;

                reg1 = ImplicitRegion[f1 < y < 10 && x > 0, x, y];
                reg2 = ImplicitRegion[f2 < y < f3, x, y];

                Show[
                Region[
                regDiff = RegionDifference[reg2, reg1]],
                Plot[f1, f2, f3, x, 0, 10,
                PlotStyle ->
                Orange, AbsoluteThickness[4],
                Purple, AbsoluteThickness[4],
                Darker@Green, AbsoluteThickness[4]],
                Epilog ->
                Text[Style[x1, 14, Bold], x1, 2, 0, -1],
                Arrow[pt1, x1, 2],
                Text[Style[x2, 14, Bold], 7.75, pt2[[2]], 1, 0],
                Arrow[pt2, 7.75, pt2[[2]]],
                Text[Style[f1h, 14, Bold], 10, 8, -1, 0],
                Text[Style[f2h, 14, Bold], 9.5, 1.5, -1, 0],
                Text[Style[f3h, 14, Bold], 5, 11],
                Red, AbsolutePointSize[7],
                Point[pt1, pt2],
                Ticks -> 5, 10, 5, 10,
                PlotRange -> -1, 14, -1, 12,
                Axes -> True]


                enter image description here



                The area of the shaded region is



                area = Area[regDiff] // FullSimplify

                (* 25/2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)


                The area relative to the smaller circle is



                area/Area[reg2] // N

                (* 0.186378 *)





                share|improve this answer










                $endgroup$

















                  8














                  8










                  8







                  $begingroup$

                  f1h = HoldForm[10 - Sqrt[10^2 - x^2]];
                  f1 = f1h // ReleaseHold;
                  f2h = HoldForm[5 - Sqrt[5^2 - (x - 5)^2]];
                  f2 = f2h // ReleaseHold;
                  f3h = HoldForm[5 + Sqrt[5^2 - (x - 5)^2]];
                  f3 = f3h // ReleaseHold;


                  The x values for the curve intersections are



                  x1, x2 = x /. Solve[f1 == #, x][[1]] & /@ f2, f3;


                  The point coordinates for the curve intersections are



                  pt1, pt2 = (#, f1 /. x -> # // FullSimplify) & /@ x1, x2;

                  reg1 = ImplicitRegion[f1 < y < 10 && x > 0, x, y];
                  reg2 = ImplicitRegion[f2 < y < f3, x, y];

                  Show[
                  Region[
                  regDiff = RegionDifference[reg2, reg1]],
                  Plot[f1, f2, f3, x, 0, 10,
                  PlotStyle ->
                  Orange, AbsoluteThickness[4],
                  Purple, AbsoluteThickness[4],
                  Darker@Green, AbsoluteThickness[4]],
                  Epilog ->
                  Text[Style[x1, 14, Bold], x1, 2, 0, -1],
                  Arrow[pt1, x1, 2],
                  Text[Style[x2, 14, Bold], 7.75, pt2[[2]], 1, 0],
                  Arrow[pt2, 7.75, pt2[[2]]],
                  Text[Style[f1h, 14, Bold], 10, 8, -1, 0],
                  Text[Style[f2h, 14, Bold], 9.5, 1.5, -1, 0],
                  Text[Style[f3h, 14, Bold], 5, 11],
                  Red, AbsolutePointSize[7],
                  Point[pt1, pt2],
                  Ticks -> 5, 10, 5, 10,
                  PlotRange -> -1, 14, -1, 12,
                  Axes -> True]


                  enter image description here



                  The area of the shaded region is



                  area = Area[regDiff] // FullSimplify

                  (* 25/2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)


                  The area relative to the smaller circle is



                  area/Area[reg2] // N

                  (* 0.186378 *)





                  share|improve this answer










                  $endgroup$



                  f1h = HoldForm[10 - Sqrt[10^2 - x^2]];
                  f1 = f1h // ReleaseHold;
                  f2h = HoldForm[5 - Sqrt[5^2 - (x - 5)^2]];
                  f2 = f2h // ReleaseHold;
                  f3h = HoldForm[5 + Sqrt[5^2 - (x - 5)^2]];
                  f3 = f3h // ReleaseHold;


                  The x values for the curve intersections are



                  x1, x2 = x /. Solve[f1 == #, x][[1]] & /@ f2, f3;


                  The point coordinates for the curve intersections are



                  pt1, pt2 = (#, f1 /. x -> # // FullSimplify) & /@ x1, x2;

                  reg1 = ImplicitRegion[f1 < y < 10 && x > 0, x, y];
                  reg2 = ImplicitRegion[f2 < y < f3, x, y];

                  Show[
                  Region[
                  regDiff = RegionDifference[reg2, reg1]],
                  Plot[f1, f2, f3, x, 0, 10,
                  PlotStyle ->
                  Orange, AbsoluteThickness[4],
                  Purple, AbsoluteThickness[4],
                  Darker@Green, AbsoluteThickness[4]],
                  Epilog ->
                  Text[Style[x1, 14, Bold], x1, 2, 0, -1],
                  Arrow[pt1, x1, 2],
                  Text[Style[x2, 14, Bold], 7.75, pt2[[2]], 1, 0],
                  Arrow[pt2, 7.75, pt2[[2]]],
                  Text[Style[f1h, 14, Bold], 10, 8, -1, 0],
                  Text[Style[f2h, 14, Bold], 9.5, 1.5, -1, 0],
                  Text[Style[f3h, 14, Bold], 5, 11],
                  Red, AbsolutePointSize[7],
                  Point[pt1, pt2],
                  Ticks -> 5, 10, 5, 10,
                  PlotRange -> -1, 14, -1, 12,
                  Axes -> True]


                  enter image description here



                  The area of the shaded region is



                  area = Area[regDiff] // FullSimplify

                  (* 25/2 (Sqrt[7] + π - ArcCot[3/Sqrt[7]] - 4 ArcTan[(5 Sqrt[7])/9]) *)


                  The area relative to the smaller circle is



                  area/Area[reg2] // N

                  (* 0.186378 *)






                  share|improve this answer













                  share|improve this answer




                  share|improve this answer



                  share|improve this answer










                  answered 9 hours ago









                  Bob HanlonBob Hanlon

                  66.2k3 gold badges37 silver badges101 bronze badges




                  66.2k3 gold badges37 silver badges101 bronze badges


























                      5
















                      $begingroup$

                      One simple way to visualize complicated regions in mathematica



                      disk1 = Region[Disk[5, 5, 5]]

                      disk2 = Region[Disk[0, 10, 10]]

                      disk3 = Region[Disk[10, 0, 10]]

                      result = Region[
                      RegionUnion[RegionDifference[disk1, disk3],
                      RegionDifference[disk1, disk2]]]







                      share|improve this answer










                      $endgroup$














                      • $begingroup$
                        RegionDifference nice function!
                        $endgroup$
                        – CasperYC
                        10 hours ago










                      • $begingroup$
                        Anyway to smooth the "tip"?
                        $endgroup$
                        – CasperYC
                        10 hours ago






                      • 1




                        $begingroup$
                        result = RegionPlot[ RegionUnion[RegionDifference[disk1, disk3], RegionDifference[disk1, disk2]], PlotPoints -> 100]
                        $endgroup$
                        – OkkesDulgerci
                        10 hours ago















                      5
















                      $begingroup$

                      One simple way to visualize complicated regions in mathematica



                      disk1 = Region[Disk[5, 5, 5]]

                      disk2 = Region[Disk[0, 10, 10]]

                      disk3 = Region[Disk[10, 0, 10]]

                      result = Region[
                      RegionUnion[RegionDifference[disk1, disk3],
                      RegionDifference[disk1, disk2]]]







                      share|improve this answer










                      $endgroup$














                      • $begingroup$
                        RegionDifference nice function!
                        $endgroup$
                        – CasperYC
                        10 hours ago










                      • $begingroup$
                        Anyway to smooth the "tip"?
                        $endgroup$
                        – CasperYC
                        10 hours ago






                      • 1




                        $begingroup$
                        result = RegionPlot[ RegionUnion[RegionDifference[disk1, disk3], RegionDifference[disk1, disk2]], PlotPoints -> 100]
                        $endgroup$
                        – OkkesDulgerci
                        10 hours ago













                      5














                      5










                      5







                      $begingroup$

                      One simple way to visualize complicated regions in mathematica



                      disk1 = Region[Disk[5, 5, 5]]

                      disk2 = Region[Disk[0, 10, 10]]

                      disk3 = Region[Disk[10, 0, 10]]

                      result = Region[
                      RegionUnion[RegionDifference[disk1, disk3],
                      RegionDifference[disk1, disk2]]]







                      share|improve this answer










                      $endgroup$



                      One simple way to visualize complicated regions in mathematica



                      disk1 = Region[Disk[5, 5, 5]]

                      disk2 = Region[Disk[0, 10, 10]]

                      disk3 = Region[Disk[10, 0, 10]]

                      result = Region[
                      RegionUnion[RegionDifference[disk1, disk3],
                      RegionDifference[disk1, disk2]]]








                      share|improve this answer













                      share|improve this answer




                      share|improve this answer



                      share|improve this answer










                      answered 11 hours ago









                      MarkhaimMarkhaim

                      59210 bronze badges




                      59210 bronze badges














                      • $begingroup$
                        RegionDifference nice function!
                        $endgroup$
                        – CasperYC
                        10 hours ago










                      • $begingroup$
                        Anyway to smooth the "tip"?
                        $endgroup$
                        – CasperYC
                        10 hours ago






                      • 1




                        $begingroup$
                        result = RegionPlot[ RegionUnion[RegionDifference[disk1, disk3], RegionDifference[disk1, disk2]], PlotPoints -> 100]
                        $endgroup$
                        – OkkesDulgerci
                        10 hours ago
















                      • $begingroup$
                        RegionDifference nice function!
                        $endgroup$
                        – CasperYC
                        10 hours ago










                      • $begingroup$
                        Anyway to smooth the "tip"?
                        $endgroup$
                        – CasperYC
                        10 hours ago






                      • 1




                        $begingroup$
                        result = RegionPlot[ RegionUnion[RegionDifference[disk1, disk3], RegionDifference[disk1, disk2]], PlotPoints -> 100]
                        $endgroup$
                        – OkkesDulgerci
                        10 hours ago















                      $begingroup$
                      RegionDifference nice function!
                      $endgroup$
                      – CasperYC
                      10 hours ago




                      $begingroup$
                      RegionDifference nice function!
                      $endgroup$
                      – CasperYC
                      10 hours ago












                      $begingroup$
                      Anyway to smooth the "tip"?
                      $endgroup$
                      – CasperYC
                      10 hours ago




                      $begingroup$
                      Anyway to smooth the "tip"?
                      $endgroup$
                      – CasperYC
                      10 hours ago




                      1




                      1




                      $begingroup$
                      result = RegionPlot[ RegionUnion[RegionDifference[disk1, disk3], RegionDifference[disk1, disk2]], PlotPoints -> 100]
                      $endgroup$
                      – OkkesDulgerci
                      10 hours ago




                      $begingroup$
                      result = RegionPlot[ RegionUnion[RegionDifference[disk1, disk3], RegionDifference[disk1, disk2]], PlotPoints -> 100]
                      $endgroup$
                      – OkkesDulgerci
                      10 hours ago











                      2
















                      $begingroup$

                      RegionPlot[
                      x^2 + y^2 < 25 [And]
                      ((x - 5)^2 + (y + 5)^2 > 100 [Or] (x + 5)^2 + (y - 5)^2 > 100),
                      x, -5, 5, y, -5, 5]


                      enter image description here



                      Or...



                      z[w_] := EuclideanDistance[x, y, w 5, -5];
                      RegionPlot[
                      z[0] < 5 [And] (z[1] > 10 [Or] z[-1] > 10),
                      x, -5, 5, y, -5, 5]


                      Or...



                      z[w_] := (a = (x, y - 5 w, -w)).a;
                      RegionPlot[
                      z[0] < 25 [And] (z[1] > 100 [Or] z[-1] > 100),
                      x, -5, 5, y, -5, 5]


                      Or even shorter....



                      z[w_, k_] := (a = (x, y - 5 w, -w)).a > 25 k;
                      RegionPlot[
                      Not[z[0, 1]] [And] (z[1, 4] [Or] z[-1, 4]),
                      x, -5, 5, y, -5, 5]


                      I would be very impressed if someone uses fewer keystrokes than this in a Region-based solution:



                      d[c_, r_:10] := Region[Disk[c, r]];
                      RegionDifference[d[5, 5, 5], RegionIntersection[d[0, 10], d[10, 0]]]


                      Or...



                      d[c_, r_:10] := Region[Disk[c, r]];
                      q = 0, 10;
                      h = 5, -5;
                      RegionDifference[d[q + h, 5], RegionIntersection[d[q], d[q + 2 h]]]


                      Or....



                      d[c_, r_:10] := Region[Disk[c, r]]; q = 5, 5; h = 5, -5;
                      RegionDifference[d[q, 5], RegionIntersection[d[q - h], d[q + h]]]


                      Pretty efficient!






                      share|improve this answer












                      $endgroup$



















                        2
















                        $begingroup$

                        RegionPlot[
                        x^2 + y^2 < 25 [And]
                        ((x - 5)^2 + (y + 5)^2 > 100 [Or] (x + 5)^2 + (y - 5)^2 > 100),
                        x, -5, 5, y, -5, 5]


                        enter image description here



                        Or...



                        z[w_] := EuclideanDistance[x, y, w 5, -5];
                        RegionPlot[
                        z[0] < 5 [And] (z[1] > 10 [Or] z[-1] > 10),
                        x, -5, 5, y, -5, 5]


                        Or...



                        z[w_] := (a = (x, y - 5 w, -w)).a;
                        RegionPlot[
                        z[0] < 25 [And] (z[1] > 100 [Or] z[-1] > 100),
                        x, -5, 5, y, -5, 5]


                        Or even shorter....



                        z[w_, k_] := (a = (x, y - 5 w, -w)).a > 25 k;
                        RegionPlot[
                        Not[z[0, 1]] [And] (z[1, 4] [Or] z[-1, 4]),
                        x, -5, 5, y, -5, 5]


                        I would be very impressed if someone uses fewer keystrokes than this in a Region-based solution:



                        d[c_, r_:10] := Region[Disk[c, r]];
                        RegionDifference[d[5, 5, 5], RegionIntersection[d[0, 10], d[10, 0]]]


                        Or...



                        d[c_, r_:10] := Region[Disk[c, r]];
                        q = 0, 10;
                        h = 5, -5;
                        RegionDifference[d[q + h, 5], RegionIntersection[d[q], d[q + 2 h]]]


                        Or....



                        d[c_, r_:10] := Region[Disk[c, r]]; q = 5, 5; h = 5, -5;
                        RegionDifference[d[q, 5], RegionIntersection[d[q - h], d[q + h]]]


                        Pretty efficient!






                        share|improve this answer












                        $endgroup$

















                          2














                          2










                          2







                          $begingroup$

                          RegionPlot[
                          x^2 + y^2 < 25 [And]
                          ((x - 5)^2 + (y + 5)^2 > 100 [Or] (x + 5)^2 + (y - 5)^2 > 100),
                          x, -5, 5, y, -5, 5]


                          enter image description here



                          Or...



                          z[w_] := EuclideanDistance[x, y, w 5, -5];
                          RegionPlot[
                          z[0] < 5 [And] (z[1] > 10 [Or] z[-1] > 10),
                          x, -5, 5, y, -5, 5]


                          Or...



                          z[w_] := (a = (x, y - 5 w, -w)).a;
                          RegionPlot[
                          z[0] < 25 [And] (z[1] > 100 [Or] z[-1] > 100),
                          x, -5, 5, y, -5, 5]


                          Or even shorter....



                          z[w_, k_] := (a = (x, y - 5 w, -w)).a > 25 k;
                          RegionPlot[
                          Not[z[0, 1]] [And] (z[1, 4] [Or] z[-1, 4]),
                          x, -5, 5, y, -5, 5]


                          I would be very impressed if someone uses fewer keystrokes than this in a Region-based solution:



                          d[c_, r_:10] := Region[Disk[c, r]];
                          RegionDifference[d[5, 5, 5], RegionIntersection[d[0, 10], d[10, 0]]]


                          Or...



                          d[c_, r_:10] := Region[Disk[c, r]];
                          q = 0, 10;
                          h = 5, -5;
                          RegionDifference[d[q + h, 5], RegionIntersection[d[q], d[q + 2 h]]]


                          Or....



                          d[c_, r_:10] := Region[Disk[c, r]]; q = 5, 5; h = 5, -5;
                          RegionDifference[d[q, 5], RegionIntersection[d[q - h], d[q + h]]]


                          Pretty efficient!






                          share|improve this answer












                          $endgroup$



                          RegionPlot[
                          x^2 + y^2 < 25 [And]
                          ((x - 5)^2 + (y + 5)^2 > 100 [Or] (x + 5)^2 + (y - 5)^2 > 100),
                          x, -5, 5, y, -5, 5]


                          enter image description here



                          Or...



                          z[w_] := EuclideanDistance[x, y, w 5, -5];
                          RegionPlot[
                          z[0] < 5 [And] (z[1] > 10 [Or] z[-1] > 10),
                          x, -5, 5, y, -5, 5]


                          Or...



                          z[w_] := (a = (x, y - 5 w, -w)).a;
                          RegionPlot[
                          z[0] < 25 [And] (z[1] > 100 [Or] z[-1] > 100),
                          x, -5, 5, y, -5, 5]


                          Or even shorter....



                          z[w_, k_] := (a = (x, y - 5 w, -w)).a > 25 k;
                          RegionPlot[
                          Not[z[0, 1]] [And] (z[1, 4] [Or] z[-1, 4]),
                          x, -5, 5, y, -5, 5]


                          I would be very impressed if someone uses fewer keystrokes than this in a Region-based solution:



                          d[c_, r_:10] := Region[Disk[c, r]];
                          RegionDifference[d[5, 5, 5], RegionIntersection[d[0, 10], d[10, 0]]]


                          Or...



                          d[c_, r_:10] := Region[Disk[c, r]];
                          q = 0, 10;
                          h = 5, -5;
                          RegionDifference[d[q + h, 5], RegionIntersection[d[q], d[q + 2 h]]]


                          Or....



                          d[c_, r_:10] := Region[Disk[c, r]]; q = 5, 5; h = 5, -5;
                          RegionDifference[d[q, 5], RegionIntersection[d[q - h], d[q + h]]]


                          Pretty efficient!







                          share|improve this answer















                          share|improve this answer




                          share|improve this answer



                          share|improve this answer








                          edited 2 hours ago

























                          answered 5 hours ago









                          David G. StorkDavid G. Stork

                          26.3k2 gold badges24 silver badges59 bronze badges




                          26.3k2 gold badges24 silver badges59 bronze badges































                              draft saved

                              draft discarded















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f207329%2fwhats-the-most-efficient-way-to-draw-this-region%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown









                              Popular posts from this blog

                              Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                              Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                              Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її