Table with varying stepCreating simple tableExclude Infinite Value in TablePlotting entries of one table vs entries of another with a condition on a third tableTable with conditionsTable of a two variable functionHow to create a table of tables with different table lengths?Intersperse strings among variables in a tableTable with the logarithmic stepProgress bar / counter for multi-row table with 2 variablesLinearly change the step size in a table

Why would a car salesman tell me not to get my credit pulled again?

Why is it bad to use your whole foot in rock climbing

Idiom for 'person who gets violent when drunk"

Approach sick days in feedback meeting

Can I get a photo of an Ancient Arrow?

What are some of the expected properties of metallic glasses and some steps to create them? (semi-ELI5)

Someone who is granted access to information but not expected to read it

Is it good practice to create tables dynamically?

Is there a radar system monitoring the UK mainland border?

How can I find out about the game world without meta-influencing it?

Identification: what type of connector does the pictured socket take?

List of interesting Quantitative Finance podcasts

David slept with Bathsheba because she was pure?? What does that mean?

Is all-caps blackletter no longer taboo?

Why are ambiguous grammars bad?

Purpose of cylindrical attachments on Power Transmission towers

What to do when the GM gives the party an overpowered item?

Remove the small black rectangle that appears at the end of environment

Print "N NE E SE S SW W NW"

As easy as Three, Two, One... How fast can you go from Five to Four?

Placement of positioning lights on A320 winglets

What publication claimed that Michael Jackson died in a nuclear holocaust?

If absolute velocity does not exist, how can we say a rocket accelerates in empty space?

Can an open source licence be revoked if it violates employer's IP?



Table with varying step


Creating simple tableExclude Infinite Value in TablePlotting entries of one table vs entries of another with a condition on a third tableTable with conditionsTable of a two variable functionHow to create a table of tables with different table lengths?Intersperse strings among variables in a tableTable with the logarithmic stepProgress bar / counter for multi-row table with 2 variablesLinearly change the step size in a table













2












$begingroup$


I would like to produce a table



Table1=Table[j,j^2,j,0.0001,Pi,Deltaj]


where Deltaj is 0.0001 for j < 5*10^-3 and 0.01 otherwise. How to do this?










share|improve this question









$endgroup$
















    2












    $begingroup$


    I would like to produce a table



    Table1=Table[j,j^2,j,0.0001,Pi,Deltaj]


    where Deltaj is 0.0001 for j < 5*10^-3 and 0.01 otherwise. How to do this?










    share|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      I would like to produce a table



      Table1=Table[j,j^2,j,0.0001,Pi,Deltaj]


      where Deltaj is 0.0001 for j < 5*10^-3 and 0.01 otherwise. How to do this?










      share|improve this question









      $endgroup$




      I would like to produce a table



      Table1=Table[j,j^2,j,0.0001,Pi,Deltaj]


      where Deltaj is 0.0001 for j < 5*10^-3 and 0.01 otherwise. How to do this?







      table






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 8 hours ago









      John TaylorJohn Taylor

      853311




      853311




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Define the $j$-dependent step size:



          Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];


          Make a list of $j$-values to use:



          With[start = 0.0001, end = π,
          jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]



          0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
          0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
          0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
          0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
          0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
          0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
          0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135




          Evaluate the table over these $j$-values:



          Table[j, j^2, j, jvalues]



          0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
          9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
          3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
          8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
          1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
          2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
          3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
          4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
          5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
          7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
          9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
          0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
          0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
          0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
          0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
          0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
          0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
          0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
          0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822







          share|improve this answer











          $endgroup$




















            4












            $begingroup$

             Union[
            Table[j, j^2, j, 0, .005, .0001],
            Table[j, j^2, j, 0.005, .05, .001]
            ]


            or



            timelist = Table[Exp[j], j, 1, 10];
            Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
            ]





            share|improve this answer











            $endgroup$












            • $begingroup$
              Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
              $endgroup$
              – John Taylor
              8 hours ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "387"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f200162%2ftable-with-varying-step%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Define the $j$-dependent step size:



            Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];


            Make a list of $j$-values to use:



            With[start = 0.0001, end = π,
            jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]



            0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
            0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
            0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
            0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
            0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
            0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
            0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135




            Evaluate the table over these $j$-values:



            Table[j, j^2, j, jvalues]



            0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
            9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
            3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
            8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
            1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
            2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
            3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
            4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
            5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
            7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
            9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
            0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
            0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
            0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
            0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
            0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
            0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
            0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
            0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822







            share|improve this answer











            $endgroup$

















              3












              $begingroup$

              Define the $j$-dependent step size:



              Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];


              Make a list of $j$-values to use:



              With[start = 0.0001, end = π,
              jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]



              0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
              0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
              0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
              0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
              0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
              0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
              0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135




              Evaluate the table over these $j$-values:



              Table[j, j^2, j, jvalues]



              0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
              9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
              3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
              8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
              1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
              2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
              3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
              4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
              5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
              7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
              9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
              0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
              0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
              0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
              0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
              0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
              0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
              0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
              0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822







              share|improve this answer











              $endgroup$















                3












                3








                3





                $begingroup$

                Define the $j$-dependent step size:



                Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];


                Make a list of $j$-values to use:



                With[start = 0.0001, end = π,
                jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]



                0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
                0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
                0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
                0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
                0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
                0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
                0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135




                Evaluate the table over these $j$-values:



                Table[j, j^2, j, jvalues]



                0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
                9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
                3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
                8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
                1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
                2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
                3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
                4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
                5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
                7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
                9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
                0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
                0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
                0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
                0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
                0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
                0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
                0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
                0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822







                share|improve this answer











                $endgroup$



                Define the $j$-dependent step size:



                Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];


                Make a list of $j$-values to use:



                With[start = 0.0001, end = π,
                jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]



                0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
                0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
                0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
                0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
                0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
                0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
                0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135




                Evaluate the table over these $j$-values:



                Table[j, j^2, j, jvalues]



                0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
                9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
                3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
                8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
                1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
                2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
                3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
                4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
                5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
                7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
                9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
                0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
                0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
                0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
                0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
                0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
                0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
                0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
                0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822








                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 7 hours ago

























                answered 8 hours ago









                RomanRoman

                10.9k11943




                10.9k11943





















                    4












                    $begingroup$

                     Union[
                    Table[j, j^2, j, 0, .005, .0001],
                    Table[j, j^2, j, 0.005, .05, .001]
                    ]


                    or



                    timelist = Table[Exp[j], j, 1, 10];
                    Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
                    ]





                    share|improve this answer











                    $endgroup$












                    • $begingroup$
                      Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
                      $endgroup$
                      – John Taylor
                      8 hours ago















                    4












                    $begingroup$

                     Union[
                    Table[j, j^2, j, 0, .005, .0001],
                    Table[j, j^2, j, 0.005, .05, .001]
                    ]


                    or



                    timelist = Table[Exp[j], j, 1, 10];
                    Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
                    ]





                    share|improve this answer











                    $endgroup$












                    • $begingroup$
                      Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
                      $endgroup$
                      – John Taylor
                      8 hours ago













                    4












                    4








                    4





                    $begingroup$

                     Union[
                    Table[j, j^2, j, 0, .005, .0001],
                    Table[j, j^2, j, 0.005, .05, .001]
                    ]


                    or



                    timelist = Table[Exp[j], j, 1, 10];
                    Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
                    ]





                    share|improve this answer











                    $endgroup$



                     Union[
                    Table[j, j^2, j, 0, .005, .0001],
                    Table[j, j^2, j, 0.005, .05, .001]
                    ]


                    or



                    timelist = Table[Exp[j], j, 1, 10];
                    Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
                    ]






                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 8 hours ago

























                    answered 8 hours ago









                    David G. StorkDavid G. Stork

                    25.5k22256




                    25.5k22256











                    • $begingroup$
                      Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
                      $endgroup$
                      – John Taylor
                      8 hours ago
















                    • $begingroup$
                      Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
                      $endgroup$
                      – John Taylor
                      8 hours ago















                    $begingroup$
                    Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
                    $endgroup$
                    – John Taylor
                    8 hours ago




                    $begingroup$
                    Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
                    $endgroup$
                    – John Taylor
                    8 hours ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f200162%2ftable-with-varying-step%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                    Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                    Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її