Table with varying stepCreating simple tableExclude Infinite Value in TablePlotting entries of one table vs entries of another with a condition on a third tableTable with conditionsTable of a two variable functionHow to create a table of tables with different table lengths?Intersperse strings among variables in a tableTable with the logarithmic stepProgress bar / counter for multi-row table with 2 variablesLinearly change the step size in a table
Why would a car salesman tell me not to get my credit pulled again?
Why is it bad to use your whole foot in rock climbing
Idiom for 'person who gets violent when drunk"
Approach sick days in feedback meeting
Can I get a photo of an Ancient Arrow?
What are some of the expected properties of metallic glasses and some steps to create them? (semi-ELI5)
Someone who is granted access to information but not expected to read it
Is it good practice to create tables dynamically?
Is there a radar system monitoring the UK mainland border?
How can I find out about the game world without meta-influencing it?
Identification: what type of connector does the pictured socket take?
List of interesting Quantitative Finance podcasts
David slept with Bathsheba because she was pure?? What does that mean?
Is all-caps blackletter no longer taboo?
Why are ambiguous grammars bad?
Purpose of cylindrical attachments on Power Transmission towers
What to do when the GM gives the party an overpowered item?
Remove the small black rectangle that appears at the end of environment
Print "N NE E SE S SW W NW"
As easy as Three, Two, One... How fast can you go from Five to Four?
Placement of positioning lights on A320 winglets
What publication claimed that Michael Jackson died in a nuclear holocaust?
If absolute velocity does not exist, how can we say a rocket accelerates in empty space?
Can an open source licence be revoked if it violates employer's IP?
Table with varying step
Creating simple tableExclude Infinite Value in TablePlotting entries of one table vs entries of another with a condition on a third tableTable with conditionsTable of a two variable functionHow to create a table of tables with different table lengths?Intersperse strings among variables in a tableTable with the logarithmic stepProgress bar / counter for multi-row table with 2 variablesLinearly change the step size in a table
$begingroup$
I would like to produce a table
Table1=Table[j,j^2,j,0.0001,Pi,Deltaj]
where Deltaj
is 0.0001 for j < 5*10^-3 and 0.01 otherwise. How to do this?
table
$endgroup$
add a comment |
$begingroup$
I would like to produce a table
Table1=Table[j,j^2,j,0.0001,Pi,Deltaj]
where Deltaj
is 0.0001 for j < 5*10^-3 and 0.01 otherwise. How to do this?
table
$endgroup$
add a comment |
$begingroup$
I would like to produce a table
Table1=Table[j,j^2,j,0.0001,Pi,Deltaj]
where Deltaj
is 0.0001 for j < 5*10^-3 and 0.01 otherwise. How to do this?
table
$endgroup$
I would like to produce a table
Table1=Table[j,j^2,j,0.0001,Pi,Deltaj]
where Deltaj
is 0.0001 for j < 5*10^-3 and 0.01 otherwise. How to do this?
table
table
asked 8 hours ago
John TaylorJohn Taylor
853311
853311
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Define the $j$-dependent step size:
Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];
Make a list of $j$-values to use:
With[start = 0.0001, end = π,
jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]
0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135
Evaluate the table over these $j$-values:
Table[j, j^2, j, jvalues]
0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822
$endgroup$
add a comment |
$begingroup$
Union[
Table[j, j^2, j, 0, .005, .0001],
Table[j, j^2, j, 0.005, .05, .001]
]
or
timelist = Table[Exp[j], j, 1, 10];
Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
]
$endgroup$
$begingroup$
Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
$endgroup$
– John Taylor
8 hours ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f200162%2ftable-with-varying-step%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Define the $j$-dependent step size:
Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];
Make a list of $j$-values to use:
With[start = 0.0001, end = π,
jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]
0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135
Evaluate the table over these $j$-values:
Table[j, j^2, j, jvalues]
0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822
$endgroup$
add a comment |
$begingroup$
Define the $j$-dependent step size:
Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];
Make a list of $j$-values to use:
With[start = 0.0001, end = π,
jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]
0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135
Evaluate the table over these $j$-values:
Table[j, j^2, j, jvalues]
0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822
$endgroup$
add a comment |
$begingroup$
Define the $j$-dependent step size:
Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];
Make a list of $j$-values to use:
With[start = 0.0001, end = π,
jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]
0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135
Evaluate the table over these $j$-values:
Table[j, j^2, j, jvalues]
0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822
$endgroup$
Define the $j$-dependent step size:
Δ[j_] = Piecewise[0.0001, j < 5*10^-3, 0.01, j >= 5*10^-3];
Make a list of $j$-values to use:
With[start = 0.0001, end = π,
jvalues = NestWhileList[# + Δ[#] &, start, # <= end &, 1, ∞, -1]]
0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007,
0.0008, 0.0009, 0.001, 0.0011, 0.0012, 0.0013, 0.0014, 0.0015,
0.0016, 0.0017, 0.0018, 0.0019, 0.002, 0.0021, 0.0022, 0.0023,
0.0024, 0.0025, 0.0026, 0.0027, 0.0028, 0.0029, 0.003, 0.0031,
0.0032, 0.0033, 0.0034, 0.0035, 0.0036, 0.0037, 0.0038, 0.0039,
0.004, 0.0041, 0.0042, 0.0043, 0.0044, 0.0045, 0.0046, 0.0047,
0.0048, 0.0049, 0.005, 0.015, 0.025, 0.035, 0.045, 0.055, 0.065, ..., 3.115, 3.125, 3.135
Evaluate the table over these $j$-values:
Table[j, j^2, j, jvalues]
0.0001, 1.*10^-8, 0.0002, 4.*10^-8, 0.0003,
9.*10^-8, 0.0004, 1.6*10^-7, 0.0005, 2.5*10^-7, 0.0006,
3.6*10^-7, 0.0007, 4.9*10^-7, 0.0008, 6.4*10^-7, 0.0009,
8.1*10^-7, 0.001, 1.*10^-6, 0.0011, 1.21*10^-6, 0.0012,
1.44*10^-6, 0.0013, 1.69*10^-6, 0.0014, 1.96*10^-6, 0.0015,
2.25*10^-6, 0.0016, 2.56*10^-6, 0.0017, 2.89*10^-6, 0.0018,
3.24*10^-6, 0.0019, 3.61*10^-6, 0.002, 4.*10^-6, 0.0021,
4.41*10^-6, 0.0022, 4.84*10^-6, 0.0023, 5.29*10^-6, 0.0024,
5.76*10^-6, 0.0025, 6.25*10^-6, 0.0026, 6.76*10^-6, 0.0027,
7.29*10^-6, 0.0028, 7.84*10^-6, 0.0029, 8.41*10^-6, 0.003,
9.*10^-6, 0.0031, 9.61*10^-6, 0.0032, 0.00001024, 0.0033,
0.00001089, 0.0034, 0.00001156, 0.0035, 0.00001225, 0.0036,
0.00001296, 0.0037, 0.00001369, 0.0038, 0.00001444, 0.0039,
0.00001521, 0.004, 0.000016, 0.0041, 0.00001681, 0.0042,
0.00001764, 0.0043, 0.00001849, 0.0044, 0.00001936, 0.0045,
0.00002025, 0.0046, 0.00002116, 0.0047, 0.00002209, 0.0048,
0.00002304, 0.0049, 0.00002401, 0.005, 0.000025, 0.015,
0.000225, 0.025, 0.000625, 0.035, 0.001225, 0.045,
0.002025, 0.055, 0.003025, 0.065, 0.004225, ..., 3.115, 9.70322, 3.125, 9.76562, 3.135, 9.82822
edited 7 hours ago
answered 8 hours ago
RomanRoman
10.9k11943
10.9k11943
add a comment |
add a comment |
$begingroup$
Union[
Table[j, j^2, j, 0, .005, .0001],
Table[j, j^2, j, 0.005, .05, .001]
]
or
timelist = Table[Exp[j], j, 1, 10];
Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
]
$endgroup$
$begingroup$
Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
$endgroup$
– John Taylor
8 hours ago
add a comment |
$begingroup$
Union[
Table[j, j^2, j, 0, .005, .0001],
Table[j, j^2, j, 0.005, .05, .001]
]
or
timelist = Table[Exp[j], j, 1, 10];
Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
]
$endgroup$
$begingroup$
Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
$endgroup$
– John Taylor
8 hours ago
add a comment |
$begingroup$
Union[
Table[j, j^2, j, 0, .005, .0001],
Table[j, j^2, j, 0.005, .05, .001]
]
or
timelist = Table[Exp[j], j, 1, 10];
Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
]
$endgroup$
Union[
Table[j, j^2, j, 0, .005, .0001],
Table[j, j^2, j, 0.005, .05, .001]
]
or
timelist = Table[Exp[j], j, 1, 10];
Table[timelist[[i]], timelist[[i]]^2, i, Length[timelist]
]
edited 8 hours ago
answered 8 hours ago
David G. StorkDavid G. Stork
25.5k22256
25.5k22256
$begingroup$
Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
$endgroup$
– John Taylor
8 hours ago
add a comment |
$begingroup$
Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
$endgroup$
– John Taylor
8 hours ago
$begingroup$
Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
$endgroup$
– John Taylor
8 hours ago
$begingroup$
Thank you. However, I am looking for something like Deltaj[j] which takes different values for different js.
$endgroup$
– John Taylor
8 hours ago
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f200162%2ftable-with-varying-step%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown