Sum of Infinite series with a Geometric series in multiplyThe $n$th derivative of $f(e^x)$Winning Probability / Dice GameFinding formula for the nth partial sumPartial sum of a geometric seriesFormula for partial sum of (10)/(10n+1)Telescoping series order.Proof that a sum is monotonically decreasingSum of infinite series $sum_i=1^infty frac 1 i(i+1)(i+2)…(i+n)$Sequence of Riccati's rootsIs the series $sum_n=1^infty Bigl(1-Bigl(1-frac1n^1+epsilonBigr)^nBigr)$ convergent?Given $S_n = sum dots$ and $a_n = sum dots$ prove that $a_n = S_n + 1over ncdot n!$General formula for a SUM
Plotting level sets of the form f(x,y,c)==0
How did Gollum know Sauron was gathering the Haradrim to make war?
Would there be balance issues if I allowed opportunity attacks against any creature, not just hostile ones?
How can I oppose my advisor granting gift authorship to a collaborator?
What is this red bug infesting some trees in southern Germany?
Divide Numbers by 0
Is torque as fundamental a concept as force?
Why not use futuristic pavise ballistic shields for protection?
Punishment in pacifist society
How to run a command 1 out of N times in Bash
How is total raw calculated for Science Pack 2?
Is mathematics truth?
How do we know if a dialogue sounds unnatural without asking for feedback?
Are there photos of the Apollo LM showing disturbed lunar soil resulting from descent engine exhaust?
Why do we need explainable AI?
In mathematics is there a substitution that is "different" from Vieta's substitution to solve the cubic equation?
Tiny image scraper for xkcd.com
What is the converted mana cost of land cards?
Meaning of "offen balkon machen"?
One hour 10 min layover in Newark; International -> Domestic connection. Enough time to clear customs?
Why is k-means used for non normally distributed data?
How to use multiple criteria for -find
Heuristic argument for the Riemann Hypothesis
Are manifolds admitting a circle foliation covered by manifolds with a (non-trivial) circle action?
Sum of Infinite series with a Geometric series in multiply
The $n$th derivative of $f(e^x)$Winning Probability / Dice GameFinding formula for the nth partial sumPartial sum of a geometric seriesFormula for partial sum of (10)/(10n+1)Telescoping series order.Proof that a sum is monotonically decreasingSum of infinite series $sum_i=1^infty frac 1 i(i+1)(i+2)…(i+n)$Sequence of Riccati's rootsIs the series $sum_n=1^infty Bigl(1-Bigl(1-frac1n^1+epsilonBigr)^nBigr)$ convergent?Given $S_n = sum dots$ and $a_n = sum dots$ prove that $a_n = S_n + 1over ncdot n!$General formula for a SUM
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I came across these series while solving a probability question.
enter link description here
let |r| < 1 ,
$$S_n=sum_k=1^inftyk^n.r^k$$
For n=0 ,it's a GP. $S_0=frac11-r$
For n=1 ,it's a AGP , $S_1=frac-11-r+frac1(1-r)^2$
for n=2 , This series can be reduced to AGP by substituting $k^2=1.3.5....(2k-1)$ & $S_2=frac-r(1-r)^2+frac2r(1-r)^3$.
Is it possible to find sum further in this series . Is there any pattern.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I came across these series while solving a probability question.
enter link description here
let |r| < 1 ,
$$S_n=sum_k=1^inftyk^n.r^k$$
For n=0 ,it's a GP. $S_0=frac11-r$
For n=1 ,it's a AGP , $S_1=frac-11-r+frac1(1-r)^2$
for n=2 , This series can be reduced to AGP by substituting $k^2=1.3.5....(2k-1)$ & $S_2=frac-r(1-r)^2+frac2r(1-r)^3$.
Is it possible to find sum further in this series . Is there any pattern.
sequences-and-series
$endgroup$
add a comment |
$begingroup$
I came across these series while solving a probability question.
enter link description here
let |r| < 1 ,
$$S_n=sum_k=1^inftyk^n.r^k$$
For n=0 ,it's a GP. $S_0=frac11-r$
For n=1 ,it's a AGP , $S_1=frac-11-r+frac1(1-r)^2$
for n=2 , This series can be reduced to AGP by substituting $k^2=1.3.5....(2k-1)$ & $S_2=frac-r(1-r)^2+frac2r(1-r)^3$.
Is it possible to find sum further in this series . Is there any pattern.
sequences-and-series
$endgroup$
I came across these series while solving a probability question.
enter link description here
let |r| < 1 ,
$$S_n=sum_k=1^inftyk^n.r^k$$
For n=0 ,it's a GP. $S_0=frac11-r$
For n=1 ,it's a AGP , $S_1=frac-11-r+frac1(1-r)^2$
for n=2 , This series can be reduced to AGP by substituting $k^2=1.3.5....(2k-1)$ & $S_2=frac-r(1-r)^2+frac2r(1-r)^3$.
Is it possible to find sum further in this series . Is there any pattern.
sequences-and-series
sequences-and-series
edited 11 hours ago
Rishi
asked 12 hours ago
RishiRishi
646 bronze badges
646 bronze badges
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If you take the (formal) dereivative of $S_n$ with respect to $r$, then
$$ fracmathrm dmathrm drS_n=sum_k=1^infty k^nfracmathrm dmathrm drr^k=sum_k=1^infty k^ncdot k r^k-1=frac 1rsum_k=1^ infty k^n+1r^k=frac1rS_n+1$$
so you obtain a recursion formula,
$$S_n+1=rfracmathrm dmathrm drS_n. $$
$endgroup$
$begingroup$
fantastic observation! any connection with riemann zeta?
$endgroup$
– vidyarthi
12 hours ago
1
$begingroup$
@vidyarthi You can compute the Dirichlet eta function, and hence the Riemann zeta function, by taking the limit as $rto-1$.
$endgroup$
– Simply Beautiful Art
11 hours ago
add a comment |
$begingroup$
Using the $n$th derivative of $f(e^x)$, we have
$$S_n(e^x)=fracmathrm d^nmathrm dx^nfrac11-e^x=sum_k=0^nnbrace kfrack!e^kx(1-e^x)^k+1$$
and by extension,
$$S_n(r)=sum_k=0^nnbrace kfrack!r^k(1-r)^k+1$$
where $displaystylenbrace k$ are the Stirling numbers of the second kind.
$endgroup$
add a comment |
$begingroup$
Given $S_n=sum_k=1^inftyk^ncdot r^k$, it must be:
$$beginalignS_0&=sum_k=1^inftyr^k=fracr1-r=-1+frac11-r; \ S_0'&=frac1(1-r)^2=colorred1(S_0+1)^2;\
S_1&=sum_k=1^inftykcdot r^k=rS_0'=r(S_0+1)^2; \
S_1'&=colorred1(S_0+1)^2+colorred2r(S_0+1)^3\
S_2&=sum_k=1^inftyk^2cdot r^k=rS_1'=r(S_0+1)^2+2r^2(S_0+1)^3; \ S_2'&=colorred1(S_0+1)^2+colorred6r(S_0+1)^3+colorred6r^2(S_0+1)^4\
S_3&=sum_k=1^inftyk^3cdot r^k=rS_2'; \ S_3'&=colorred1(S_0+1)^2+colorred14r(S_0+1)^3+colorred36r^2(S_0+1)^4+colorred24r^3(S_0+1)^5endalign$$
where the coefficients in red are the number sequence A019538.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3341995%2fsum-of-infinite-series-with-a-geometric-series-in-multiply%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you take the (formal) dereivative of $S_n$ with respect to $r$, then
$$ fracmathrm dmathrm drS_n=sum_k=1^infty k^nfracmathrm dmathrm drr^k=sum_k=1^infty k^ncdot k r^k-1=frac 1rsum_k=1^ infty k^n+1r^k=frac1rS_n+1$$
so you obtain a recursion formula,
$$S_n+1=rfracmathrm dmathrm drS_n. $$
$endgroup$
$begingroup$
fantastic observation! any connection with riemann zeta?
$endgroup$
– vidyarthi
12 hours ago
1
$begingroup$
@vidyarthi You can compute the Dirichlet eta function, and hence the Riemann zeta function, by taking the limit as $rto-1$.
$endgroup$
– Simply Beautiful Art
11 hours ago
add a comment |
$begingroup$
If you take the (formal) dereivative of $S_n$ with respect to $r$, then
$$ fracmathrm dmathrm drS_n=sum_k=1^infty k^nfracmathrm dmathrm drr^k=sum_k=1^infty k^ncdot k r^k-1=frac 1rsum_k=1^ infty k^n+1r^k=frac1rS_n+1$$
so you obtain a recursion formula,
$$S_n+1=rfracmathrm dmathrm drS_n. $$
$endgroup$
$begingroup$
fantastic observation! any connection with riemann zeta?
$endgroup$
– vidyarthi
12 hours ago
1
$begingroup$
@vidyarthi You can compute the Dirichlet eta function, and hence the Riemann zeta function, by taking the limit as $rto-1$.
$endgroup$
– Simply Beautiful Art
11 hours ago
add a comment |
$begingroup$
If you take the (formal) dereivative of $S_n$ with respect to $r$, then
$$ fracmathrm dmathrm drS_n=sum_k=1^infty k^nfracmathrm dmathrm drr^k=sum_k=1^infty k^ncdot k r^k-1=frac 1rsum_k=1^ infty k^n+1r^k=frac1rS_n+1$$
so you obtain a recursion formula,
$$S_n+1=rfracmathrm dmathrm drS_n. $$
$endgroup$
If you take the (formal) dereivative of $S_n$ with respect to $r$, then
$$ fracmathrm dmathrm drS_n=sum_k=1^infty k^nfracmathrm dmathrm drr^k=sum_k=1^infty k^ncdot k r^k-1=frac 1rsum_k=1^ infty k^n+1r^k=frac1rS_n+1$$
so you obtain a recursion formula,
$$S_n+1=rfracmathrm dmathrm drS_n. $$
answered 12 hours ago
Hagen von EitzenHagen von Eitzen
296k24 gold badges285 silver badges522 bronze badges
296k24 gold badges285 silver badges522 bronze badges
$begingroup$
fantastic observation! any connection with riemann zeta?
$endgroup$
– vidyarthi
12 hours ago
1
$begingroup$
@vidyarthi You can compute the Dirichlet eta function, and hence the Riemann zeta function, by taking the limit as $rto-1$.
$endgroup$
– Simply Beautiful Art
11 hours ago
add a comment |
$begingroup$
fantastic observation! any connection with riemann zeta?
$endgroup$
– vidyarthi
12 hours ago
1
$begingroup$
@vidyarthi You can compute the Dirichlet eta function, and hence the Riemann zeta function, by taking the limit as $rto-1$.
$endgroup$
– Simply Beautiful Art
11 hours ago
$begingroup$
fantastic observation! any connection with riemann zeta?
$endgroup$
– vidyarthi
12 hours ago
$begingroup$
fantastic observation! any connection with riemann zeta?
$endgroup$
– vidyarthi
12 hours ago
1
1
$begingroup$
@vidyarthi You can compute the Dirichlet eta function, and hence the Riemann zeta function, by taking the limit as $rto-1$.
$endgroup$
– Simply Beautiful Art
11 hours ago
$begingroup$
@vidyarthi You can compute the Dirichlet eta function, and hence the Riemann zeta function, by taking the limit as $rto-1$.
$endgroup$
– Simply Beautiful Art
11 hours ago
add a comment |
$begingroup$
Using the $n$th derivative of $f(e^x)$, we have
$$S_n(e^x)=fracmathrm d^nmathrm dx^nfrac11-e^x=sum_k=0^nnbrace kfrack!e^kx(1-e^x)^k+1$$
and by extension,
$$S_n(r)=sum_k=0^nnbrace kfrack!r^k(1-r)^k+1$$
where $displaystylenbrace k$ are the Stirling numbers of the second kind.
$endgroup$
add a comment |
$begingroup$
Using the $n$th derivative of $f(e^x)$, we have
$$S_n(e^x)=fracmathrm d^nmathrm dx^nfrac11-e^x=sum_k=0^nnbrace kfrack!e^kx(1-e^x)^k+1$$
and by extension,
$$S_n(r)=sum_k=0^nnbrace kfrack!r^k(1-r)^k+1$$
where $displaystylenbrace k$ are the Stirling numbers of the second kind.
$endgroup$
add a comment |
$begingroup$
Using the $n$th derivative of $f(e^x)$, we have
$$S_n(e^x)=fracmathrm d^nmathrm dx^nfrac11-e^x=sum_k=0^nnbrace kfrack!e^kx(1-e^x)^k+1$$
and by extension,
$$S_n(r)=sum_k=0^nnbrace kfrack!r^k(1-r)^k+1$$
where $displaystylenbrace k$ are the Stirling numbers of the second kind.
$endgroup$
Using the $n$th derivative of $f(e^x)$, we have
$$S_n(e^x)=fracmathrm d^nmathrm dx^nfrac11-e^x=sum_k=0^nnbrace kfrack!e^kx(1-e^x)^k+1$$
and by extension,
$$S_n(r)=sum_k=0^nnbrace kfrack!r^k(1-r)^k+1$$
where $displaystylenbrace k$ are the Stirling numbers of the second kind.
answered 11 hours ago
Simply Beautiful ArtSimply Beautiful Art
53.7k6 gold badges85 silver badges195 bronze badges
53.7k6 gold badges85 silver badges195 bronze badges
add a comment |
add a comment |
$begingroup$
Given $S_n=sum_k=1^inftyk^ncdot r^k$, it must be:
$$beginalignS_0&=sum_k=1^inftyr^k=fracr1-r=-1+frac11-r; \ S_0'&=frac1(1-r)^2=colorred1(S_0+1)^2;\
S_1&=sum_k=1^inftykcdot r^k=rS_0'=r(S_0+1)^2; \
S_1'&=colorred1(S_0+1)^2+colorred2r(S_0+1)^3\
S_2&=sum_k=1^inftyk^2cdot r^k=rS_1'=r(S_0+1)^2+2r^2(S_0+1)^3; \ S_2'&=colorred1(S_0+1)^2+colorred6r(S_0+1)^3+colorred6r^2(S_0+1)^4\
S_3&=sum_k=1^inftyk^3cdot r^k=rS_2'; \ S_3'&=colorred1(S_0+1)^2+colorred14r(S_0+1)^3+colorred36r^2(S_0+1)^4+colorred24r^3(S_0+1)^5endalign$$
where the coefficients in red are the number sequence A019538.
$endgroup$
add a comment |
$begingroup$
Given $S_n=sum_k=1^inftyk^ncdot r^k$, it must be:
$$beginalignS_0&=sum_k=1^inftyr^k=fracr1-r=-1+frac11-r; \ S_0'&=frac1(1-r)^2=colorred1(S_0+1)^2;\
S_1&=sum_k=1^inftykcdot r^k=rS_0'=r(S_0+1)^2; \
S_1'&=colorred1(S_0+1)^2+colorred2r(S_0+1)^3\
S_2&=sum_k=1^inftyk^2cdot r^k=rS_1'=r(S_0+1)^2+2r^2(S_0+1)^3; \ S_2'&=colorred1(S_0+1)^2+colorred6r(S_0+1)^3+colorred6r^2(S_0+1)^4\
S_3&=sum_k=1^inftyk^3cdot r^k=rS_2'; \ S_3'&=colorred1(S_0+1)^2+colorred14r(S_0+1)^3+colorred36r^2(S_0+1)^4+colorred24r^3(S_0+1)^5endalign$$
where the coefficients in red are the number sequence A019538.
$endgroup$
add a comment |
$begingroup$
Given $S_n=sum_k=1^inftyk^ncdot r^k$, it must be:
$$beginalignS_0&=sum_k=1^inftyr^k=fracr1-r=-1+frac11-r; \ S_0'&=frac1(1-r)^2=colorred1(S_0+1)^2;\
S_1&=sum_k=1^inftykcdot r^k=rS_0'=r(S_0+1)^2; \
S_1'&=colorred1(S_0+1)^2+colorred2r(S_0+1)^3\
S_2&=sum_k=1^inftyk^2cdot r^k=rS_1'=r(S_0+1)^2+2r^2(S_0+1)^3; \ S_2'&=colorred1(S_0+1)^2+colorred6r(S_0+1)^3+colorred6r^2(S_0+1)^4\
S_3&=sum_k=1^inftyk^3cdot r^k=rS_2'; \ S_3'&=colorred1(S_0+1)^2+colorred14r(S_0+1)^3+colorred36r^2(S_0+1)^4+colorred24r^3(S_0+1)^5endalign$$
where the coefficients in red are the number sequence A019538.
$endgroup$
Given $S_n=sum_k=1^inftyk^ncdot r^k$, it must be:
$$beginalignS_0&=sum_k=1^inftyr^k=fracr1-r=-1+frac11-r; \ S_0'&=frac1(1-r)^2=colorred1(S_0+1)^2;\
S_1&=sum_k=1^inftykcdot r^k=rS_0'=r(S_0+1)^2; \
S_1'&=colorred1(S_0+1)^2+colorred2r(S_0+1)^3\
S_2&=sum_k=1^inftyk^2cdot r^k=rS_1'=r(S_0+1)^2+2r^2(S_0+1)^3; \ S_2'&=colorred1(S_0+1)^2+colorred6r(S_0+1)^3+colorred6r^2(S_0+1)^4\
S_3&=sum_k=1^inftyk^3cdot r^k=rS_2'; \ S_3'&=colorred1(S_0+1)^2+colorred14r(S_0+1)^3+colorred36r^2(S_0+1)^4+colorred24r^3(S_0+1)^5endalign$$
where the coefficients in red are the number sequence A019538.
answered 6 hours ago
farruhotafarruhota
25.2k2 gold badges10 silver badges46 bronze badges
25.2k2 gold badges10 silver badges46 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3341995%2fsum-of-infinite-series-with-a-geometric-series-in-multiply%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown