How do neutron star binaries form?What physical interactions actually make single stars leave their binary companions at formation?What happens to the neighboring star of a type Ia supernova?Regarding binary systems (with pulsars)Will a black hole eventually turn into a neutron star?Can a binary star system create a stationary black hole?Kepler's 3rd law applied to binary systems: How can the two orbits have different semi-major axes?On Planets orbiting binary stars
Vegetarian dishes on Russian trains (European part)
Unsolved Problems due to Lack of Computational Power
Polar contour plot in Mathematica?
Why did St. Jerome use "virago" in Gen. 2:23?
Control GPIO pins from C
The Lucky House
Are unaudited server logs admissible in a court of law?
Independence of Mean and Variance of Discrete Uniform Distributions
Are there any OR challenges that are similar to kaggle's competitions?
Can others monetize my project with GPLv3?
Why don't politicians push for fossil fuel reduction by pointing out their scarcity?
Can I submit a paper computer science conference using an alias if using my real name can cause legal trouble in my original country
Why do aircraft leave the cruising altitude long before landing just to circle?
Have only girls been born for a long time in this village?
Could sidesticks be linked?
How to use source_location in a variadic template function?
How do we test and determine if a USB cable+connector is version 2, 3.0 or 3.1?
Lazy brainfuck programmer
Check disk usage of files returned with spaces
Chess software to analyze games
Earliest evidence of objects intended for future archaeologists?
Is there such a thing as too inconvenient?
What can I do to keep a threaded bolt from falling out of it’s slot
Are there reliable, formulaic ways to form chords on the guitar?
How do neutron star binaries form?
What physical interactions actually make single stars leave their binary companions at formation?What happens to the neighboring star of a type Ia supernova?Regarding binary systems (with pulsars)Will a black hole eventually turn into a neutron star?Can a binary star system create a stationary black hole?Kepler's 3rd law applied to binary systems: How can the two orbits have different semi-major axes?On Planets orbiting binary stars
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
Do neutron star binary systems come from previously active-star binaries, where where both stars have gone supernova and left behind neutron stars that are still in orbit? Or do they form when two previously unbound neutron stars approach each other and fall into orbit?
astrophysics neutron-stars stellar-evolution binary-stars
$endgroup$
add a comment |
$begingroup$
Do neutron star binary systems come from previously active-star binaries, where where both stars have gone supernova and left behind neutron stars that are still in orbit? Or do they form when two previously unbound neutron stars approach each other and fall into orbit?
astrophysics neutron-stars stellar-evolution binary-stars
$endgroup$
add a comment |
$begingroup$
Do neutron star binary systems come from previously active-star binaries, where where both stars have gone supernova and left behind neutron stars that are still in orbit? Or do they form when two previously unbound neutron stars approach each other and fall into orbit?
astrophysics neutron-stars stellar-evolution binary-stars
$endgroup$
Do neutron star binary systems come from previously active-star binaries, where where both stars have gone supernova and left behind neutron stars that are still in orbit? Or do they form when two previously unbound neutron stars approach each other and fall into orbit?
astrophysics neutron-stars stellar-evolution binary-stars
astrophysics neutron-stars stellar-evolution binary-stars
edited 11 hours ago
Qmechanic♦
112k13 gold badges219 silver badges1331 bronze badges
112k13 gold badges219 silver badges1331 bronze badges
asked 11 hours ago
WillGWillG
1,0193 silver badges13 bronze badges
1,0193 silver badges13 bronze badges
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Neutron star binaries are thought to mostly form from binary systems containing two massive stars, both of which must go through a supernova stage.
Details can be surmised from this talk by Podsialowski (a noted authority on the topic). In order to get neutron star binaries that are close enough to merge (via gravitational wave emission) in the time available since the start of the universe, it is necessary for both mass transfer and common envelope evolution to occur, although another possibility could be 3-body interactions between the binary and other members of a dense cluster.
EDIT: I'm revising my answer slightly in the light of stumbling across a recent paper by Belczynski et al. (2018). In this paper they discuss THREE channels by with close neutron star binaries can occur. (1) The evolution of an isolated binary ststem, as I described above. (2) Complicated interactions between binary systems within a dense stellar aggregate (i.e. a globular cluster). (3) Multi-body interactions and dynamical friction within dense nuclear clusters at the centres of galaxies. The simulations in this paper result in the concluson that although there are routes to form the progenitors of merging neutron star binaries by channels (2) and (3), that the rate of neutron star mergers produced by channel (1) is 100 times higher.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f497505%2fhow-do-neutron-star-binaries-form%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Neutron star binaries are thought to mostly form from binary systems containing two massive stars, both of which must go through a supernova stage.
Details can be surmised from this talk by Podsialowski (a noted authority on the topic). In order to get neutron star binaries that are close enough to merge (via gravitational wave emission) in the time available since the start of the universe, it is necessary for both mass transfer and common envelope evolution to occur, although another possibility could be 3-body interactions between the binary and other members of a dense cluster.
EDIT: I'm revising my answer slightly in the light of stumbling across a recent paper by Belczynski et al. (2018). In this paper they discuss THREE channels by with close neutron star binaries can occur. (1) The evolution of an isolated binary ststem, as I described above. (2) Complicated interactions between binary systems within a dense stellar aggregate (i.e. a globular cluster). (3) Multi-body interactions and dynamical friction within dense nuclear clusters at the centres of galaxies. The simulations in this paper result in the concluson that although there are routes to form the progenitors of merging neutron star binaries by channels (2) and (3), that the rate of neutron star mergers produced by channel (1) is 100 times higher.
$endgroup$
add a comment |
$begingroup$
Neutron star binaries are thought to mostly form from binary systems containing two massive stars, both of which must go through a supernova stage.
Details can be surmised from this talk by Podsialowski (a noted authority on the topic). In order to get neutron star binaries that are close enough to merge (via gravitational wave emission) in the time available since the start of the universe, it is necessary for both mass transfer and common envelope evolution to occur, although another possibility could be 3-body interactions between the binary and other members of a dense cluster.
EDIT: I'm revising my answer slightly in the light of stumbling across a recent paper by Belczynski et al. (2018). In this paper they discuss THREE channels by with close neutron star binaries can occur. (1) The evolution of an isolated binary ststem, as I described above. (2) Complicated interactions between binary systems within a dense stellar aggregate (i.e. a globular cluster). (3) Multi-body interactions and dynamical friction within dense nuclear clusters at the centres of galaxies. The simulations in this paper result in the concluson that although there are routes to form the progenitors of merging neutron star binaries by channels (2) and (3), that the rate of neutron star mergers produced by channel (1) is 100 times higher.
$endgroup$
add a comment |
$begingroup$
Neutron star binaries are thought to mostly form from binary systems containing two massive stars, both of which must go through a supernova stage.
Details can be surmised from this talk by Podsialowski (a noted authority on the topic). In order to get neutron star binaries that are close enough to merge (via gravitational wave emission) in the time available since the start of the universe, it is necessary for both mass transfer and common envelope evolution to occur, although another possibility could be 3-body interactions between the binary and other members of a dense cluster.
EDIT: I'm revising my answer slightly in the light of stumbling across a recent paper by Belczynski et al. (2018). In this paper they discuss THREE channels by with close neutron star binaries can occur. (1) The evolution of an isolated binary ststem, as I described above. (2) Complicated interactions between binary systems within a dense stellar aggregate (i.e. a globular cluster). (3) Multi-body interactions and dynamical friction within dense nuclear clusters at the centres of galaxies. The simulations in this paper result in the concluson that although there are routes to form the progenitors of merging neutron star binaries by channels (2) and (3), that the rate of neutron star mergers produced by channel (1) is 100 times higher.
$endgroup$
Neutron star binaries are thought to mostly form from binary systems containing two massive stars, both of which must go through a supernova stage.
Details can be surmised from this talk by Podsialowski (a noted authority on the topic). In order to get neutron star binaries that are close enough to merge (via gravitational wave emission) in the time available since the start of the universe, it is necessary for both mass transfer and common envelope evolution to occur, although another possibility could be 3-body interactions between the binary and other members of a dense cluster.
EDIT: I'm revising my answer slightly in the light of stumbling across a recent paper by Belczynski et al. (2018). In this paper they discuss THREE channels by with close neutron star binaries can occur. (1) The evolution of an isolated binary ststem, as I described above. (2) Complicated interactions between binary systems within a dense stellar aggregate (i.e. a globular cluster). (3) Multi-body interactions and dynamical friction within dense nuclear clusters at the centres of galaxies. The simulations in this paper result in the concluson that although there are routes to form the progenitors of merging neutron star binaries by channels (2) and (3), that the rate of neutron star mergers produced by channel (1) is 100 times higher.
edited 8 hours ago
answered 11 hours ago
Rob JeffriesRob Jeffries
73.8k7 gold badges158 silver badges256 bronze badges
73.8k7 gold badges158 silver badges256 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f497505%2fhow-do-neutron-star-binaries-form%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown