Angles between vectors of center of two incirclesRelationship between circles touching incircleCan the angles be found?Angle Between Two TangentsHow to computer two Euler Angles between two vectorsUsing overlap area to determine distance between overlapping circlesSolve for quadrilateral with minimal difference between interior anglesFind the angles between two solidsWhy is the angle between vectors restricted?Shortest distance between two rectangles in 2D
Can others monetize my project with GPLv3?
How best to join tables, which have different lengths on the same column values which exist in both tables?
Build a mob of suspiciously happy lenny faces ( ͡° ͜ʖ ͡°)
How to detect a failed AES256 decryption programmatically?
Did Wernher von Braun really have a "Saturn V painted as the V2"?
Do banks' profitability really suffer under low interest rates
Does git delete empty folders?
Why should I pay for an SSL certificate?
Can sulfuric acid itself be electrolysed?
Why do aircraft leave the cruising altitude long before landing just to circle?
Just one file echoed from an array of files
Playing a fast but quiet Alberti bass
What causes burn marks on the air handler in the attic?
A curiosity on a first three natural numbers
Can the front glass be repaired of a broken lens?
Is it alright to say good afternoon Sirs and Madams in a panel interview?
Earliest evidence of objects intended for future archaeologists?
Why is su world executable?
Have made several mistakes during the course of my PhD. Can't help but feel resentment. Can I get some advice about how to move forward?
Independence of Mean and Variance of Discrete Uniform Distributions
Do living authors still get paid royalties for their old work?
Meaning of words заштырить and отштырить
Are there reliable, formulaic ways to form chords on the guitar?
Reducing contention in thread-safe LruCache
Angles between vectors of center of two incircles
Relationship between circles touching incircleCan the angles be found?Angle Between Two TangentsHow to computer two Euler Angles between two vectorsUsing overlap area to determine distance between overlapping circlesSolve for quadrilateral with minimal difference between interior anglesFind the angles between two solidsWhy is the angle between vectors restricted?Shortest distance between two rectangles in 2D
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I have two two incircle between rectangle and two
quadrilateral circlein. It's possible to determine exact value of $phi,$ angles between vectors of center of two circles.
geometry circles angle rectangles
$endgroup$
add a comment |
$begingroup$
I have two two incircle between rectangle and two
quadrilateral circlein. It's possible to determine exact value of $phi,$ angles between vectors of center of two circles.
geometry circles angle rectangles
$endgroup$
add a comment |
$begingroup$
I have two two incircle between rectangle and two
quadrilateral circlein. It's possible to determine exact value of $phi,$ angles between vectors of center of two circles.
geometry circles angle rectangles
$endgroup$
I have two two incircle between rectangle and two
quadrilateral circlein. It's possible to determine exact value of $phi,$ angles between vectors of center of two circles.
geometry circles angle rectangles
geometry circles angle rectangles
asked 11 hours ago
BarzanHayatiBarzanHayati
4542 silver badges12 bronze badges
4542 silver badges12 bronze badges
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
Place the origin $O$ at the lower left-hand corner, and let the positive $x,y$-axes be the the natural choices based on the diagram.
Let $r$ be the radius of the red circle.
Let $P,Q$ be the centers of the circles of radii $2,1$, respectively.
Then we can express the coordinates of $P,Q$ as $P=(x,2)$ and $Q=(x,r-1)$, where $x$ is an unknown.
Computing $|OQ|$ in two ways, we get the equation
$$sqrtx^2+(r-1)^2=r+1$$
hence
$$x^2+(r-1)^2=(r+1)^2tageq1$$
Computing $|OP|$ in two ways, we get the equation
$$sqrtx^2+2^2=r-2$$
hence
$$x^2+4=(r-2)^2tageq2$$
From $(texteq1),-,(texteq2)$, we get $r=8$.
Plugging $r=8$ into $(texteq2)$, we get $x=4sqrt2$.
Using the known values of $r$ and $x$, the distance formula yields
beginalign*
|OP|&=6\[4pt]
|OQ|&=9\[4pt]
|PQ|&=5\[4pt]
endalign*
hence by the law of cosines, $cos(largephi)=largefrac2327$, so we get $largephi=cos^-1bigl(largefrac2327bigr)$.
$endgroup$
$begingroup$
that's slick!..
$endgroup$
– ganeshie8
10 hours ago
add a comment |
$begingroup$
Using Pythagoras theorem is not difficult to find that the radius $B$ of red arcs is $8$. It follows that $PQ=6$, $PR=9$ and $QR=5$. Apply now the cosine rule to triangle $PQR$ to find
$$
cosphi=23over27.
$$
$endgroup$
add a comment |
$begingroup$
Let $|AB|=|CD|=a$,$|BC|=|AD|=b$,
$|O_1E|=r_1$,
$|O_2F|=r_2$,
$angle O_1AO_2=phi$,
$angle O_1AF=alpha$
$angle O_2AF=beta$.
Then
beginalign
tanalpha&=fracb-r_1a/2
tag1label1
,\
sinalpha&=fracb-r_1b+r_1
,\
tanalpha&=fracsinalphasqrt1-sin^2alpha
=fracb-r_1b+r_1
left/
sqrt1-Big( fracb-r_1b+r_1 Big)^2 right.
=tfrac12,fracb-r_1sqrtb,r_1
tag2label2
.
endalign
From eqref1$=$eqref2 it follows
beginalign
a&=4,sqrtb,r_1
tag3label3
.
endalign
Similarly,
beginalign
tanbeta&=frac2r_2a
tag4label4
,\
sinbeta&=fracr_2b-r_2
,\
tanbeta&=
fracsinbetasqrt1-sin^2beta
=fracr_2sqrtb,(b-2,r_2)
tag5label5
.
endalign
From eqref4$=$eqref5:
beginalign
a&=2,sqrtb,(b-2,r_2)
tag6label6
,
endalign
and from eqref3$=$eqref6
we have
beginalign
b&=4r_1+2r_2
,\
a&=4,sqrtr_1,(4,r_1+2,r_2)
.
endalign
beginalign
tanphi&=tan(alpha-beta)
=fractanalpha-tanbeta1+tanalphatanbeta
=frac2(3r_1+r_2),sqrt2,r_1,(2,r_1+r_2)16,r_1^2+11,r_1,r_2+2,r_2^2
endalign
For $r_1=1$, $r_2=2$ we have
beginalign
a&=8,sqrt2approx 11.31370850
,\
b&=8
,\
phi&=arctanBig(frac10,sqrt223 Big)
approx 31.586338^circ
.
endalign
$endgroup$
add a comment |
$begingroup$
There are constraints that $A$ and $B$ must fullfil, i.e., the following system of equations coming from Pythagoras theorem applied to certain right triangles :
$$begincases(B-2)^2+2^2=(A/2)^2\(B-1)^2+(A/2)^2=(B+1)^2endcases$$
giving $A=8 sqrt2$ and $B=8$.
If now we take equations as in the partial solution you gave (a good idea) :
$$tan(theta) = dfrac2A/2 = dfracsqrt24tag1$$
and
$$tan(phi + theta) = dfrac74 sqrt2tag2$$
Equation (2) can also be written :
$$dfractan(phi) + tan(theta)1-tan(phi)tan(theta) = dfrac7sqrt28tag3$$
from which we can extract the numerical value of $tan(phi)$. Up to you...
$endgroup$
$begingroup$
It would be great if you add your answer.
$endgroup$
– BarzanHayati
10 hours ago
$begingroup$
I am going to write it.
$endgroup$
– Jean Marie
9 hours ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3327157%2fangles-between-vectors-of-center-of-two-incircles%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Place the origin $O$ at the lower left-hand corner, and let the positive $x,y$-axes be the the natural choices based on the diagram.
Let $r$ be the radius of the red circle.
Let $P,Q$ be the centers of the circles of radii $2,1$, respectively.
Then we can express the coordinates of $P,Q$ as $P=(x,2)$ and $Q=(x,r-1)$, where $x$ is an unknown.
Computing $|OQ|$ in two ways, we get the equation
$$sqrtx^2+(r-1)^2=r+1$$
hence
$$x^2+(r-1)^2=(r+1)^2tageq1$$
Computing $|OP|$ in two ways, we get the equation
$$sqrtx^2+2^2=r-2$$
hence
$$x^2+4=(r-2)^2tageq2$$
From $(texteq1),-,(texteq2)$, we get $r=8$.
Plugging $r=8$ into $(texteq2)$, we get $x=4sqrt2$.
Using the known values of $r$ and $x$, the distance formula yields
beginalign*
|OP|&=6\[4pt]
|OQ|&=9\[4pt]
|PQ|&=5\[4pt]
endalign*
hence by the law of cosines, $cos(largephi)=largefrac2327$, so we get $largephi=cos^-1bigl(largefrac2327bigr)$.
$endgroup$
$begingroup$
that's slick!..
$endgroup$
– ganeshie8
10 hours ago
add a comment |
$begingroup$
Place the origin $O$ at the lower left-hand corner, and let the positive $x,y$-axes be the the natural choices based on the diagram.
Let $r$ be the radius of the red circle.
Let $P,Q$ be the centers of the circles of radii $2,1$, respectively.
Then we can express the coordinates of $P,Q$ as $P=(x,2)$ and $Q=(x,r-1)$, where $x$ is an unknown.
Computing $|OQ|$ in two ways, we get the equation
$$sqrtx^2+(r-1)^2=r+1$$
hence
$$x^2+(r-1)^2=(r+1)^2tageq1$$
Computing $|OP|$ in two ways, we get the equation
$$sqrtx^2+2^2=r-2$$
hence
$$x^2+4=(r-2)^2tageq2$$
From $(texteq1),-,(texteq2)$, we get $r=8$.
Plugging $r=8$ into $(texteq2)$, we get $x=4sqrt2$.
Using the known values of $r$ and $x$, the distance formula yields
beginalign*
|OP|&=6\[4pt]
|OQ|&=9\[4pt]
|PQ|&=5\[4pt]
endalign*
hence by the law of cosines, $cos(largephi)=largefrac2327$, so we get $largephi=cos^-1bigl(largefrac2327bigr)$.
$endgroup$
$begingroup$
that's slick!..
$endgroup$
– ganeshie8
10 hours ago
add a comment |
$begingroup$
Place the origin $O$ at the lower left-hand corner, and let the positive $x,y$-axes be the the natural choices based on the diagram.
Let $r$ be the radius of the red circle.
Let $P,Q$ be the centers of the circles of radii $2,1$, respectively.
Then we can express the coordinates of $P,Q$ as $P=(x,2)$ and $Q=(x,r-1)$, where $x$ is an unknown.
Computing $|OQ|$ in two ways, we get the equation
$$sqrtx^2+(r-1)^2=r+1$$
hence
$$x^2+(r-1)^2=(r+1)^2tageq1$$
Computing $|OP|$ in two ways, we get the equation
$$sqrtx^2+2^2=r-2$$
hence
$$x^2+4=(r-2)^2tageq2$$
From $(texteq1),-,(texteq2)$, we get $r=8$.
Plugging $r=8$ into $(texteq2)$, we get $x=4sqrt2$.
Using the known values of $r$ and $x$, the distance formula yields
beginalign*
|OP|&=6\[4pt]
|OQ|&=9\[4pt]
|PQ|&=5\[4pt]
endalign*
hence by the law of cosines, $cos(largephi)=largefrac2327$, so we get $largephi=cos^-1bigl(largefrac2327bigr)$.
$endgroup$
Place the origin $O$ at the lower left-hand corner, and let the positive $x,y$-axes be the the natural choices based on the diagram.
Let $r$ be the radius of the red circle.
Let $P,Q$ be the centers of the circles of radii $2,1$, respectively.
Then we can express the coordinates of $P,Q$ as $P=(x,2)$ and $Q=(x,r-1)$, where $x$ is an unknown.
Computing $|OQ|$ in two ways, we get the equation
$$sqrtx^2+(r-1)^2=r+1$$
hence
$$x^2+(r-1)^2=(r+1)^2tageq1$$
Computing $|OP|$ in two ways, we get the equation
$$sqrtx^2+2^2=r-2$$
hence
$$x^2+4=(r-2)^2tageq2$$
From $(texteq1),-,(texteq2)$, we get $r=8$.
Plugging $r=8$ into $(texteq2)$, we get $x=4sqrt2$.
Using the known values of $r$ and $x$, the distance formula yields
beginalign*
|OP|&=6\[4pt]
|OQ|&=9\[4pt]
|PQ|&=5\[4pt]
endalign*
hence by the law of cosines, $cos(largephi)=largefrac2327$, so we get $largephi=cos^-1bigl(largefrac2327bigr)$.
answered 10 hours ago
quasiquasi
40.3k3 gold badges29 silver badges71 bronze badges
40.3k3 gold badges29 silver badges71 bronze badges
$begingroup$
that's slick!..
$endgroup$
– ganeshie8
10 hours ago
add a comment |
$begingroup$
that's slick!..
$endgroup$
– ganeshie8
10 hours ago
$begingroup$
that's slick!..
$endgroup$
– ganeshie8
10 hours ago
$begingroup$
that's slick!..
$endgroup$
– ganeshie8
10 hours ago
add a comment |
$begingroup$
Using Pythagoras theorem is not difficult to find that the radius $B$ of red arcs is $8$. It follows that $PQ=6$, $PR=9$ and $QR=5$. Apply now the cosine rule to triangle $PQR$ to find
$$
cosphi=23over27.
$$
$endgroup$
add a comment |
$begingroup$
Using Pythagoras theorem is not difficult to find that the radius $B$ of red arcs is $8$. It follows that $PQ=6$, $PR=9$ and $QR=5$. Apply now the cosine rule to triangle $PQR$ to find
$$
cosphi=23over27.
$$
$endgroup$
add a comment |
$begingroup$
Using Pythagoras theorem is not difficult to find that the radius $B$ of red arcs is $8$. It follows that $PQ=6$, $PR=9$ and $QR=5$. Apply now the cosine rule to triangle $PQR$ to find
$$
cosphi=23over27.
$$
$endgroup$
Using Pythagoras theorem is not difficult to find that the radius $B$ of red arcs is $8$. It follows that $PQ=6$, $PR=9$ and $QR=5$. Apply now the cosine rule to triangle $PQR$ to find
$$
cosphi=23over27.
$$
answered 10 hours ago
AretinoAretino
27.4k3 gold badges20 silver badges48 bronze badges
27.4k3 gold badges20 silver badges48 bronze badges
add a comment |
add a comment |
$begingroup$
Let $|AB|=|CD|=a$,$|BC|=|AD|=b$,
$|O_1E|=r_1$,
$|O_2F|=r_2$,
$angle O_1AO_2=phi$,
$angle O_1AF=alpha$
$angle O_2AF=beta$.
Then
beginalign
tanalpha&=fracb-r_1a/2
tag1label1
,\
sinalpha&=fracb-r_1b+r_1
,\
tanalpha&=fracsinalphasqrt1-sin^2alpha
=fracb-r_1b+r_1
left/
sqrt1-Big( fracb-r_1b+r_1 Big)^2 right.
=tfrac12,fracb-r_1sqrtb,r_1
tag2label2
.
endalign
From eqref1$=$eqref2 it follows
beginalign
a&=4,sqrtb,r_1
tag3label3
.
endalign
Similarly,
beginalign
tanbeta&=frac2r_2a
tag4label4
,\
sinbeta&=fracr_2b-r_2
,\
tanbeta&=
fracsinbetasqrt1-sin^2beta
=fracr_2sqrtb,(b-2,r_2)
tag5label5
.
endalign
From eqref4$=$eqref5:
beginalign
a&=2,sqrtb,(b-2,r_2)
tag6label6
,
endalign
and from eqref3$=$eqref6
we have
beginalign
b&=4r_1+2r_2
,\
a&=4,sqrtr_1,(4,r_1+2,r_2)
.
endalign
beginalign
tanphi&=tan(alpha-beta)
=fractanalpha-tanbeta1+tanalphatanbeta
=frac2(3r_1+r_2),sqrt2,r_1,(2,r_1+r_2)16,r_1^2+11,r_1,r_2+2,r_2^2
endalign
For $r_1=1$, $r_2=2$ we have
beginalign
a&=8,sqrt2approx 11.31370850
,\
b&=8
,\
phi&=arctanBig(frac10,sqrt223 Big)
approx 31.586338^circ
.
endalign
$endgroup$
add a comment |
$begingroup$
Let $|AB|=|CD|=a$,$|BC|=|AD|=b$,
$|O_1E|=r_1$,
$|O_2F|=r_2$,
$angle O_1AO_2=phi$,
$angle O_1AF=alpha$
$angle O_2AF=beta$.
Then
beginalign
tanalpha&=fracb-r_1a/2
tag1label1
,\
sinalpha&=fracb-r_1b+r_1
,\
tanalpha&=fracsinalphasqrt1-sin^2alpha
=fracb-r_1b+r_1
left/
sqrt1-Big( fracb-r_1b+r_1 Big)^2 right.
=tfrac12,fracb-r_1sqrtb,r_1
tag2label2
.
endalign
From eqref1$=$eqref2 it follows
beginalign
a&=4,sqrtb,r_1
tag3label3
.
endalign
Similarly,
beginalign
tanbeta&=frac2r_2a
tag4label4
,\
sinbeta&=fracr_2b-r_2
,\
tanbeta&=
fracsinbetasqrt1-sin^2beta
=fracr_2sqrtb,(b-2,r_2)
tag5label5
.
endalign
From eqref4$=$eqref5:
beginalign
a&=2,sqrtb,(b-2,r_2)
tag6label6
,
endalign
and from eqref3$=$eqref6
we have
beginalign
b&=4r_1+2r_2
,\
a&=4,sqrtr_1,(4,r_1+2,r_2)
.
endalign
beginalign
tanphi&=tan(alpha-beta)
=fractanalpha-tanbeta1+tanalphatanbeta
=frac2(3r_1+r_2),sqrt2,r_1,(2,r_1+r_2)16,r_1^2+11,r_1,r_2+2,r_2^2
endalign
For $r_1=1$, $r_2=2$ we have
beginalign
a&=8,sqrt2approx 11.31370850
,\
b&=8
,\
phi&=arctanBig(frac10,sqrt223 Big)
approx 31.586338^circ
.
endalign
$endgroup$
add a comment |
$begingroup$
Let $|AB|=|CD|=a$,$|BC|=|AD|=b$,
$|O_1E|=r_1$,
$|O_2F|=r_2$,
$angle O_1AO_2=phi$,
$angle O_1AF=alpha$
$angle O_2AF=beta$.
Then
beginalign
tanalpha&=fracb-r_1a/2
tag1label1
,\
sinalpha&=fracb-r_1b+r_1
,\
tanalpha&=fracsinalphasqrt1-sin^2alpha
=fracb-r_1b+r_1
left/
sqrt1-Big( fracb-r_1b+r_1 Big)^2 right.
=tfrac12,fracb-r_1sqrtb,r_1
tag2label2
.
endalign
From eqref1$=$eqref2 it follows
beginalign
a&=4,sqrtb,r_1
tag3label3
.
endalign
Similarly,
beginalign
tanbeta&=frac2r_2a
tag4label4
,\
sinbeta&=fracr_2b-r_2
,\
tanbeta&=
fracsinbetasqrt1-sin^2beta
=fracr_2sqrtb,(b-2,r_2)
tag5label5
.
endalign
From eqref4$=$eqref5:
beginalign
a&=2,sqrtb,(b-2,r_2)
tag6label6
,
endalign
and from eqref3$=$eqref6
we have
beginalign
b&=4r_1+2r_2
,\
a&=4,sqrtr_1,(4,r_1+2,r_2)
.
endalign
beginalign
tanphi&=tan(alpha-beta)
=fractanalpha-tanbeta1+tanalphatanbeta
=frac2(3r_1+r_2),sqrt2,r_1,(2,r_1+r_2)16,r_1^2+11,r_1,r_2+2,r_2^2
endalign
For $r_1=1$, $r_2=2$ we have
beginalign
a&=8,sqrt2approx 11.31370850
,\
b&=8
,\
phi&=arctanBig(frac10,sqrt223 Big)
approx 31.586338^circ
.
endalign
$endgroup$
Let $|AB|=|CD|=a$,$|BC|=|AD|=b$,
$|O_1E|=r_1$,
$|O_2F|=r_2$,
$angle O_1AO_2=phi$,
$angle O_1AF=alpha$
$angle O_2AF=beta$.
Then
beginalign
tanalpha&=fracb-r_1a/2
tag1label1
,\
sinalpha&=fracb-r_1b+r_1
,\
tanalpha&=fracsinalphasqrt1-sin^2alpha
=fracb-r_1b+r_1
left/
sqrt1-Big( fracb-r_1b+r_1 Big)^2 right.
=tfrac12,fracb-r_1sqrtb,r_1
tag2label2
.
endalign
From eqref1$=$eqref2 it follows
beginalign
a&=4,sqrtb,r_1
tag3label3
.
endalign
Similarly,
beginalign
tanbeta&=frac2r_2a
tag4label4
,\
sinbeta&=fracr_2b-r_2
,\
tanbeta&=
fracsinbetasqrt1-sin^2beta
=fracr_2sqrtb,(b-2,r_2)
tag5label5
.
endalign
From eqref4$=$eqref5:
beginalign
a&=2,sqrtb,(b-2,r_2)
tag6label6
,
endalign
and from eqref3$=$eqref6
we have
beginalign
b&=4r_1+2r_2
,\
a&=4,sqrtr_1,(4,r_1+2,r_2)
.
endalign
beginalign
tanphi&=tan(alpha-beta)
=fractanalpha-tanbeta1+tanalphatanbeta
=frac2(3r_1+r_2),sqrt2,r_1,(2,r_1+r_2)16,r_1^2+11,r_1,r_2+2,r_2^2
endalign
For $r_1=1$, $r_2=2$ we have
beginalign
a&=8,sqrt2approx 11.31370850
,\
b&=8
,\
phi&=arctanBig(frac10,sqrt223 Big)
approx 31.586338^circ
.
endalign
answered 53 mins ago
g.kovg.kov
6,8111 gold badge8 silver badges23 bronze badges
6,8111 gold badge8 silver badges23 bronze badges
add a comment |
add a comment |
$begingroup$
There are constraints that $A$ and $B$ must fullfil, i.e., the following system of equations coming from Pythagoras theorem applied to certain right triangles :
$$begincases(B-2)^2+2^2=(A/2)^2\(B-1)^2+(A/2)^2=(B+1)^2endcases$$
giving $A=8 sqrt2$ and $B=8$.
If now we take equations as in the partial solution you gave (a good idea) :
$$tan(theta) = dfrac2A/2 = dfracsqrt24tag1$$
and
$$tan(phi + theta) = dfrac74 sqrt2tag2$$
Equation (2) can also be written :
$$dfractan(phi) + tan(theta)1-tan(phi)tan(theta) = dfrac7sqrt28tag3$$
from which we can extract the numerical value of $tan(phi)$. Up to you...
$endgroup$
$begingroup$
It would be great if you add your answer.
$endgroup$
– BarzanHayati
10 hours ago
$begingroup$
I am going to write it.
$endgroup$
– Jean Marie
9 hours ago
add a comment |
$begingroup$
There are constraints that $A$ and $B$ must fullfil, i.e., the following system of equations coming from Pythagoras theorem applied to certain right triangles :
$$begincases(B-2)^2+2^2=(A/2)^2\(B-1)^2+(A/2)^2=(B+1)^2endcases$$
giving $A=8 sqrt2$ and $B=8$.
If now we take equations as in the partial solution you gave (a good idea) :
$$tan(theta) = dfrac2A/2 = dfracsqrt24tag1$$
and
$$tan(phi + theta) = dfrac74 sqrt2tag2$$
Equation (2) can also be written :
$$dfractan(phi) + tan(theta)1-tan(phi)tan(theta) = dfrac7sqrt28tag3$$
from which we can extract the numerical value of $tan(phi)$. Up to you...
$endgroup$
$begingroup$
It would be great if you add your answer.
$endgroup$
– BarzanHayati
10 hours ago
$begingroup$
I am going to write it.
$endgroup$
– Jean Marie
9 hours ago
add a comment |
$begingroup$
There are constraints that $A$ and $B$ must fullfil, i.e., the following system of equations coming from Pythagoras theorem applied to certain right triangles :
$$begincases(B-2)^2+2^2=(A/2)^2\(B-1)^2+(A/2)^2=(B+1)^2endcases$$
giving $A=8 sqrt2$ and $B=8$.
If now we take equations as in the partial solution you gave (a good idea) :
$$tan(theta) = dfrac2A/2 = dfracsqrt24tag1$$
and
$$tan(phi + theta) = dfrac74 sqrt2tag2$$
Equation (2) can also be written :
$$dfractan(phi) + tan(theta)1-tan(phi)tan(theta) = dfrac7sqrt28tag3$$
from which we can extract the numerical value of $tan(phi)$. Up to you...
$endgroup$
There are constraints that $A$ and $B$ must fullfil, i.e., the following system of equations coming from Pythagoras theorem applied to certain right triangles :
$$begincases(B-2)^2+2^2=(A/2)^2\(B-1)^2+(A/2)^2=(B+1)^2endcases$$
giving $A=8 sqrt2$ and $B=8$.
If now we take equations as in the partial solution you gave (a good idea) :
$$tan(theta) = dfrac2A/2 = dfracsqrt24tag1$$
and
$$tan(phi + theta) = dfrac74 sqrt2tag2$$
Equation (2) can also be written :
$$dfractan(phi) + tan(theta)1-tan(phi)tan(theta) = dfrac7sqrt28tag3$$
from which we can extract the numerical value of $tan(phi)$. Up to you...
edited 8 hours ago
answered 10 hours ago
Jean MarieJean Marie
34.5k4 gold badges26 silver badges60 bronze badges
34.5k4 gold badges26 silver badges60 bronze badges
$begingroup$
It would be great if you add your answer.
$endgroup$
– BarzanHayati
10 hours ago
$begingroup$
I am going to write it.
$endgroup$
– Jean Marie
9 hours ago
add a comment |
$begingroup$
It would be great if you add your answer.
$endgroup$
– BarzanHayati
10 hours ago
$begingroup$
I am going to write it.
$endgroup$
– Jean Marie
9 hours ago
$begingroup$
It would be great if you add your answer.
$endgroup$
– BarzanHayati
10 hours ago
$begingroup$
It would be great if you add your answer.
$endgroup$
– BarzanHayati
10 hours ago
$begingroup$
I am going to write it.
$endgroup$
– Jean Marie
9 hours ago
$begingroup$
I am going to write it.
$endgroup$
– Jean Marie
9 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3327157%2fangles-between-vectors-of-center-of-two-incircles%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown