Calculate the limit without l'Hopital ruleHow to calculate limit without L'HopitalSolving limit without L'Hopitalwithout using l'hopital ruleSolving limit of radicals without L'Hopital $lim_xto 64 fracsqrt x - 8sqrt[3] x - 4 $Calculate limit without L'Hopital's ruleCalculate the limit without using L'Hopital's RuleSolving limit without L'Hopital ruleHow to calculate this limit without L'Hopital rule?Calculate the following limit without L'Hopital
Other than good shoes and a stick, what are some ways to preserve your knees on long hikes?
Amortized Loans seem to benefit the bank more than the customer
Calculate the limit without l'Hopital rule
How do we know that black holes are spinning?
Is there a tool to measure the "maturity" of a code in Git?
Python web-scraper to download table of transistor counts from Wikipedia
Answer Not A Fool, or Answer A Fool?
Asked to Not Use Transactions and to Use A Workaround to Simulate One
Is it appropriate to CC a lot of people on an email
Are there objective criteria for classifying consonance v. dissonance?
Bash awk command with quotes
Importance of the current postdoc advisor's letter in TT job search
How to be sure services and researches offered by the University are not becoming cases of unfair competition?
Teleport everything in a large zone; or teleport all living things and make a lot of equipment disappear
Would it be unbalanced to increase a druid's number of uses of Wild Shape based on level?
'Overwrote' files, space still occupied, are they lost?
What 68-pin connector is this on my 2.5" solid state drive?
geschafft or geschaffen? which one is past participle of schaffen?
Can an infinite series be thought of as adding up "infinitely many" terms?
What is a "major country" as named in Bernie Sanders' Healthcare debate answers?
How to modify this code to add more vertical space in timeline that uses Tikz
How to write characters doing illogical things in a believable way?
How to make classical firearms effective on space habitats despite the coriolis effect?
Statistical tests for benchmark comparison
Calculate the limit without l'Hopital rule
How to calculate limit without L'HopitalSolving limit without L'Hopitalwithout using l'hopital ruleSolving limit of radicals without L'Hopital $lim_xto 64 fracsqrt x - 8sqrt[3] x - 4 $Calculate limit without L'Hopital's ruleCalculate the limit without using L'Hopital's RuleSolving limit without L'Hopital ruleHow to calculate this limit without L'Hopital rule?Calculate the following limit without L'Hopital
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
I have the following limit:
$$
lim_xto 7dfracx^2-4x-21x-4-sqrtx+2
$$
I could easily calculate the limit = 12 using the l'Hopital rule.
Could you please suggest any other ways to solve this limit without using the l'Hopital rule?
Thank you
limits limits-without-lhopital
$endgroup$
add a comment
|
$begingroup$
I have the following limit:
$$
lim_xto 7dfracx^2-4x-21x-4-sqrtx+2
$$
I could easily calculate the limit = 12 using the l'Hopital rule.
Could you please suggest any other ways to solve this limit without using the l'Hopital rule?
Thank you
limits limits-without-lhopital
$endgroup$
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac(x^2 - 4x - 21)(x-4+sqrtx+2)(x-4-sqrtx+2)(x-4+sqrtx+2) = frac(x^2 - 4x - 21)(x-4+sqrtx+2)x^2-9x+14$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
add a comment
|
$begingroup$
I have the following limit:
$$
lim_xto 7dfracx^2-4x-21x-4-sqrtx+2
$$
I could easily calculate the limit = 12 using the l'Hopital rule.
Could you please suggest any other ways to solve this limit without using the l'Hopital rule?
Thank you
limits limits-without-lhopital
$endgroup$
I have the following limit:
$$
lim_xto 7dfracx^2-4x-21x-4-sqrtx+2
$$
I could easily calculate the limit = 12 using the l'Hopital rule.
Could you please suggest any other ways to solve this limit without using the l'Hopital rule?
Thank you
limits limits-without-lhopital
limits limits-without-lhopital
asked 8 hours ago
Freshman42Freshman42
3401 silver badge14 bronze badges
3401 silver badge14 bronze badges
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac(x^2 - 4x - 21)(x-4+sqrtx+2)(x-4-sqrtx+2)(x-4+sqrtx+2) = frac(x^2 - 4x - 21)(x-4+sqrtx+2)x^2-9x+14$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
add a comment
|
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac(x^2 - 4x - 21)(x-4+sqrtx+2)(x-4-sqrtx+2)(x-4+sqrtx+2) = frac(x^2 - 4x - 21)(x-4+sqrtx+2)x^2-9x+14$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
1
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac(x^2 - 4x - 21)(x-4+sqrtx+2)(x-4-sqrtx+2)(x-4+sqrtx+2) = frac(x^2 - 4x - 21)(x-4+sqrtx+2)x^2-9x+14$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac(x^2 - 4x - 21)(x-4+sqrtx+2)(x-4-sqrtx+2)(x-4+sqrtx+2) = frac(x^2 - 4x - 21)(x-4+sqrtx+2)x^2-9x+14$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago
add a comment
|
3 Answers
3
active
oldest
votes
$begingroup$
An alternative to @MatthewDaly's comment: write $y:=sqrtx+2$ so you want$$lim_yto3fracy^4-8y^2-9y^2-y-6=lim_yto3fracy^3+3y^2+y+3y+2=frac3^3+3times 3^2+3+35=12.$$
$endgroup$
add a comment
|
$begingroup$
$$lim_x→7fracx^2−4x−21x−4−sqrtx+2cdotfracx−4+sqrtx+2x−4+sqrtx+2\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)(x−4)^2−(x+2)\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)x^2-9x+14\
=lim_x→7frac(x+3)cdot(x−4+sqrtx+2)x-2\
=frac10cdot65=12$$
since $(x-7)$ can be factored out of both of those quadratics.
$endgroup$
add a comment
|
$begingroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_xto7fracx-4-sqrtx+2x-7=lim_xto7fracx-7-(sqrtx+2-3)x-7=
1-lim_xto7fracx+2-9(x-7)(sqrtx+2+3)=1-frac16=frac56
$$
So your limit is
$$
lim_xto7fracx-7x-4-sqrtx+2(x+3)=frac65cdot10=12
$$
$endgroup$
add a comment
|
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/4.0/"u003ecc by-sa 4.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3356594%2fcalculate-the-limit-without-lhopital-rule%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
An alternative to @MatthewDaly's comment: write $y:=sqrtx+2$ so you want$$lim_yto3fracy^4-8y^2-9y^2-y-6=lim_yto3fracy^3+3y^2+y+3y+2=frac3^3+3times 3^2+3+35=12.$$
$endgroup$
add a comment
|
$begingroup$
An alternative to @MatthewDaly's comment: write $y:=sqrtx+2$ so you want$$lim_yto3fracy^4-8y^2-9y^2-y-6=lim_yto3fracy^3+3y^2+y+3y+2=frac3^3+3times 3^2+3+35=12.$$
$endgroup$
add a comment
|
$begingroup$
An alternative to @MatthewDaly's comment: write $y:=sqrtx+2$ so you want$$lim_yto3fracy^4-8y^2-9y^2-y-6=lim_yto3fracy^3+3y^2+y+3y+2=frac3^3+3times 3^2+3+35=12.$$
$endgroup$
An alternative to @MatthewDaly's comment: write $y:=sqrtx+2$ so you want$$lim_yto3fracy^4-8y^2-9y^2-y-6=lim_yto3fracy^3+3y^2+y+3y+2=frac3^3+3times 3^2+3+35=12.$$
answered 8 hours ago
J.G.J.G.
47k2 gold badges42 silver badges62 bronze badges
47k2 gold badges42 silver badges62 bronze badges
add a comment
|
add a comment
|
$begingroup$
$$lim_x→7fracx^2−4x−21x−4−sqrtx+2cdotfracx−4+sqrtx+2x−4+sqrtx+2\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)(x−4)^2−(x+2)\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)x^2-9x+14\
=lim_x→7frac(x+3)cdot(x−4+sqrtx+2)x-2\
=frac10cdot65=12$$
since $(x-7)$ can be factored out of both of those quadratics.
$endgroup$
add a comment
|
$begingroup$
$$lim_x→7fracx^2−4x−21x−4−sqrtx+2cdotfracx−4+sqrtx+2x−4+sqrtx+2\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)(x−4)^2−(x+2)\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)x^2-9x+14\
=lim_x→7frac(x+3)cdot(x−4+sqrtx+2)x-2\
=frac10cdot65=12$$
since $(x-7)$ can be factored out of both of those quadratics.
$endgroup$
add a comment
|
$begingroup$
$$lim_x→7fracx^2−4x−21x−4−sqrtx+2cdotfracx−4+sqrtx+2x−4+sqrtx+2\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)(x−4)^2−(x+2)\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)x^2-9x+14\
=lim_x→7frac(x+3)cdot(x−4+sqrtx+2)x-2\
=frac10cdot65=12$$
since $(x-7)$ can be factored out of both of those quadratics.
$endgroup$
$$lim_x→7fracx^2−4x−21x−4−sqrtx+2cdotfracx−4+sqrtx+2x−4+sqrtx+2\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)(x−4)^2−(x+2)\
=lim_x→7frac(x^2−4x−21)cdot(x−4+sqrtx+2)x^2-9x+14\
=lim_x→7frac(x+3)cdot(x−4+sqrtx+2)x-2\
=frac10cdot65=12$$
since $(x-7)$ can be factored out of both of those quadratics.
answered 8 hours ago
Matthew DalyMatthew Daly
4,9721 gold badge7 silver badges27 bronze badges
4,9721 gold badge7 silver badges27 bronze badges
add a comment
|
add a comment
|
$begingroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_xto7fracx-4-sqrtx+2x-7=lim_xto7fracx-7-(sqrtx+2-3)x-7=
1-lim_xto7fracx+2-9(x-7)(sqrtx+2+3)=1-frac16=frac56
$$
So your limit is
$$
lim_xto7fracx-7x-4-sqrtx+2(x+3)=frac65cdot10=12
$$
$endgroup$
add a comment
|
$begingroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_xto7fracx-4-sqrtx+2x-7=lim_xto7fracx-7-(sqrtx+2-3)x-7=
1-lim_xto7fracx+2-9(x-7)(sqrtx+2+3)=1-frac16=frac56
$$
So your limit is
$$
lim_xto7fracx-7x-4-sqrtx+2(x+3)=frac65cdot10=12
$$
$endgroup$
add a comment
|
$begingroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_xto7fracx-4-sqrtx+2x-7=lim_xto7fracx-7-(sqrtx+2-3)x-7=
1-lim_xto7fracx+2-9(x-7)(sqrtx+2+3)=1-frac16=frac56
$$
So your limit is
$$
lim_xto7fracx-7x-4-sqrtx+2(x+3)=frac65cdot10=12
$$
$endgroup$
The numerator can be factored as $(x-7)(x+3)$. Now consider
$$
lim_xto7fracx-4-sqrtx+2x-7=lim_xto7fracx-7-(sqrtx+2-3)x-7=
1-lim_xto7fracx+2-9(x-7)(sqrtx+2+3)=1-frac16=frac56
$$
So your limit is
$$
lim_xto7fracx-7x-4-sqrtx+2(x+3)=frac65cdot10=12
$$
answered 8 hours ago
egregegreg
192k14 gold badges91 silver badges218 bronze badges
192k14 gold badges91 silver badges218 bronze badges
add a comment
|
add a comment
|
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3356594%2fcalculate-the-limit-without-lhopital-rule%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
@Freshman42 My guess is that you multiplied out the numerator. There's no reason to do that. Instead, you should note $$frac(x^2 - 4x - 21)(x-4+sqrtx+2)(x-4-sqrtx+2)(x-4+sqrtx+2) = frac(x^2 - 4x - 21)(x-4+sqrtx+2)x^2-9x+14$$ Now factor the two quadratics.
$endgroup$
– Brian Moehring
8 hours ago
$begingroup$
@BrianMoehring: Thank you it works!
$endgroup$
– Freshman42
8 hours ago