Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).What is the difference between a class and a set?how to express the set of natural numbers in ZFCCardinality of Vitali sets: countably or uncountably infinite?Do we always use the Axiom of Choice when picking from uncountable number of sets?Class of all finite setsWhy doesn't this definition of natural numbers hold up in axiomatic set theory?What is the domain of the successor function?Understanding impredicative definitionsProve the intersection of every nonempty family of successor sets is a successor set itselfIs it possible to define countability without referring the natural numbers?Defining uncountably infinite set

Shell script can be run only with sh command

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

Motorized valve interfering with button?

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

How can I hide my bitcoin transactions to protect anonymity from others?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

The use of multiple foreign keys on same column in SQL Server

How can I automatically replace [[ and ]] with the [LeftDoubleBracket] and [RightDoubleBracket] operators?

Compute hash value according to multiplication method

Why is the design of haulage companies so “special”?

How do I create uniquely male characters?

Should I join office cleaning event for free?

How to add power-LED to my small amplifier?

How does one intimidate enemies without having the capacity for violence?

Work Breakdown with Tikz

Why CLRS example on residual networks does not follows its formula?

Set-theoretical foundations of Mathematics with only bounded quantifiers

How to make payment on the internet without leaving a money trail?

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

Validation accuracy vs Testing accuracy

How can I fix this gap between bookcases I made?

How to re-create Edward Weson's Pepper No. 30?

declaring a variable twice in IIFE

What typically incentivizes a professor to change jobs to a lower ranking university?



Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).


What is the difference between a class and a set?how to express the set of natural numbers in ZFCCardinality of Vitali sets: countably or uncountably infinite?Do we always use the Axiom of Choice when picking from uncountable number of sets?Class of all finite setsWhy doesn't this definition of natural numbers hold up in axiomatic set theory?What is the domain of the successor function?Understanding impredicative definitionsProve the intersection of every nonempty family of successor sets is a successor set itselfIs it possible to define countability without referring the natural numbers?Defining uncountably infinite set













10












$begingroup$


I'm trying to understand the evolution of the concept of number since Frege/ Russell and to see the "big picture".



What are the main motivations explaining the change from Russell's definition using equivalence classes ( in "Introduction to mathematical philosophy") and the current definition of (natural numbers) using the successor function?




The "stages" I can see are the following. Would you please assess the reasons I have imagined to explain (to myself) the passage from one stage to another?



(1) Frege / Russell recognized that numbers were higher-order properties, not properties of things , but of sets



(2) Numbers are defined as equivalence classes, using the relation of "the set X is equinumerous to set Y" (iff there exist at least one bijection from X to Y)



(3) To identify each number (that is each class) we would need a "standard" in each class. For example, one could use Thumb, Index, Middle finger, Ring finger, Pinky finger as a representative of the numbers having 5 elements. In that case, one would say:




the number 5 is the set of all X such that there exists a bijection from X to the set Thumb, Index, Middle finger, Ring finger, Pinky finger




and




X has 5 as cardinal number iff X belongs to the set 5




(4) But the use of these representatives requires us to admit the existence of the elements of these standards. Furthermore, it obliges us to admit that the existence of numbers depends on contingent facts of the world, that is, the existence of these elements belonging to our " standards".



(5) So to get rid of these existential presupposions, we decide to chose as standards sets whose elements exist "at minimal cost". As standard for the set "zero", we use (as we did before. But as standard for the set 1, we now use



0 (that certainly exists if 0 = exists.



and as standard for the set 2, we use 0, 1 , etc. In this way, our construction becomes independent of the existence of concrete things in the world.



(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard". So instead of saying that "2 is the set of sets that can be put in $1-1$ correspondance with the standard $ 0,1$", we simply say that



the number $2$ is (by definition) the set $ 0,1$.



(7) We finally put this set in order using the successor function ( $S($number $x)$ is by definition the union of number $x$ and of $x$) which "generates" an infinite series of numbers "out of" the null set.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
    $endgroup$
    – Noah Schweber
    9 hours ago







  • 2




    $begingroup$
    I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
    $endgroup$
    – Don Thousand
    9 hours ago






  • 1




    $begingroup$
    (6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
    $endgroup$
    – Mauro ALLEGRANZA
    5 hours ago







  • 1




    $begingroup$
    See Paul Benacerraf, What numbers could not be.
    $endgroup$
    – Mauro ALLEGRANZA
    5 hours ago















10












$begingroup$


I'm trying to understand the evolution of the concept of number since Frege/ Russell and to see the "big picture".



What are the main motivations explaining the change from Russell's definition using equivalence classes ( in "Introduction to mathematical philosophy") and the current definition of (natural numbers) using the successor function?




The "stages" I can see are the following. Would you please assess the reasons I have imagined to explain (to myself) the passage from one stage to another?



(1) Frege / Russell recognized that numbers were higher-order properties, not properties of things , but of sets



(2) Numbers are defined as equivalence classes, using the relation of "the set X is equinumerous to set Y" (iff there exist at least one bijection from X to Y)



(3) To identify each number (that is each class) we would need a "standard" in each class. For example, one could use Thumb, Index, Middle finger, Ring finger, Pinky finger as a representative of the numbers having 5 elements. In that case, one would say:




the number 5 is the set of all X such that there exists a bijection from X to the set Thumb, Index, Middle finger, Ring finger, Pinky finger




and




X has 5 as cardinal number iff X belongs to the set 5




(4) But the use of these representatives requires us to admit the existence of the elements of these standards. Furthermore, it obliges us to admit that the existence of numbers depends on contingent facts of the world, that is, the existence of these elements belonging to our " standards".



(5) So to get rid of these existential presupposions, we decide to chose as standards sets whose elements exist "at minimal cost". As standard for the set "zero", we use (as we did before. But as standard for the set 1, we now use



0 (that certainly exists if 0 = exists.



and as standard for the set 2, we use 0, 1 , etc. In this way, our construction becomes independent of the existence of concrete things in the world.



(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard". So instead of saying that "2 is the set of sets that can be put in $1-1$ correspondance with the standard $ 0,1$", we simply say that



the number $2$ is (by definition) the set $ 0,1$.



(7) We finally put this set in order using the successor function ( $S($number $x)$ is by definition the union of number $x$ and of $x$) which "generates" an infinite series of numbers "out of" the null set.










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
    $endgroup$
    – Noah Schweber
    9 hours ago







  • 2




    $begingroup$
    I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
    $endgroup$
    – Don Thousand
    9 hours ago






  • 1




    $begingroup$
    (6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
    $endgroup$
    – Mauro ALLEGRANZA
    5 hours ago







  • 1




    $begingroup$
    See Paul Benacerraf, What numbers could not be.
    $endgroup$
    – Mauro ALLEGRANZA
    5 hours ago













10












10








10





$begingroup$


I'm trying to understand the evolution of the concept of number since Frege/ Russell and to see the "big picture".



What are the main motivations explaining the change from Russell's definition using equivalence classes ( in "Introduction to mathematical philosophy") and the current definition of (natural numbers) using the successor function?




The "stages" I can see are the following. Would you please assess the reasons I have imagined to explain (to myself) the passage from one stage to another?



(1) Frege / Russell recognized that numbers were higher-order properties, not properties of things , but of sets



(2) Numbers are defined as equivalence classes, using the relation of "the set X is equinumerous to set Y" (iff there exist at least one bijection from X to Y)



(3) To identify each number (that is each class) we would need a "standard" in each class. For example, one could use Thumb, Index, Middle finger, Ring finger, Pinky finger as a representative of the numbers having 5 elements. In that case, one would say:




the number 5 is the set of all X such that there exists a bijection from X to the set Thumb, Index, Middle finger, Ring finger, Pinky finger




and




X has 5 as cardinal number iff X belongs to the set 5




(4) But the use of these representatives requires us to admit the existence of the elements of these standards. Furthermore, it obliges us to admit that the existence of numbers depends on contingent facts of the world, that is, the existence of these elements belonging to our " standards".



(5) So to get rid of these existential presupposions, we decide to chose as standards sets whose elements exist "at minimal cost". As standard for the set "zero", we use (as we did before. But as standard for the set 1, we now use



0 (that certainly exists if 0 = exists.



and as standard for the set 2, we use 0, 1 , etc. In this way, our construction becomes independent of the existence of concrete things in the world.



(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard". So instead of saying that "2 is the set of sets that can be put in $1-1$ correspondance with the standard $ 0,1$", we simply say that



the number $2$ is (by definition) the set $ 0,1$.



(7) We finally put this set in order using the successor function ( $S($number $x)$ is by definition the union of number $x$ and of $x$) which "generates" an infinite series of numbers "out of" the null set.










share|cite|improve this question











$endgroup$




I'm trying to understand the evolution of the concept of number since Frege/ Russell and to see the "big picture".



What are the main motivations explaining the change from Russell's definition using equivalence classes ( in "Introduction to mathematical philosophy") and the current definition of (natural numbers) using the successor function?




The "stages" I can see are the following. Would you please assess the reasons I have imagined to explain (to myself) the passage from one stage to another?



(1) Frege / Russell recognized that numbers were higher-order properties, not properties of things , but of sets



(2) Numbers are defined as equivalence classes, using the relation of "the set X is equinumerous to set Y" (iff there exist at least one bijection from X to Y)



(3) To identify each number (that is each class) we would need a "standard" in each class. For example, one could use Thumb, Index, Middle finger, Ring finger, Pinky finger as a representative of the numbers having 5 elements. In that case, one would say:




the number 5 is the set of all X such that there exists a bijection from X to the set Thumb, Index, Middle finger, Ring finger, Pinky finger




and




X has 5 as cardinal number iff X belongs to the set 5




(4) But the use of these representatives requires us to admit the existence of the elements of these standards. Furthermore, it obliges us to admit that the existence of numbers depends on contingent facts of the world, that is, the existence of these elements belonging to our " standards".



(5) So to get rid of these existential presupposions, we decide to chose as standards sets whose elements exist "at minimal cost". As standard for the set "zero", we use (as we did before. But as standard for the set 1, we now use



0 (that certainly exists if 0 = exists.



and as standard for the set 2, we use 0, 1 , etc. In this way, our construction becomes independent of the existence of concrete things in the world.



(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard". So instead of saying that "2 is the set of sets that can be put in $1-1$ correspondance with the standard $ 0,1$", we simply say that



the number $2$ is (by definition) the set $ 0,1$.



(7) We finally put this set in order using the successor function ( $S($number $x)$ is by definition the union of number $x$ and of $x$) which "generates" an infinite series of numbers "out of" the null set.







elementary-set-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 4 hours ago









Nij

2,01611323




2,01611323










asked 9 hours ago









Eleonore Saint JamesEleonore Saint James

697




697







  • 2




    $begingroup$
    That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
    $endgroup$
    – Noah Schweber
    9 hours ago







  • 2




    $begingroup$
    I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
    $endgroup$
    – Don Thousand
    9 hours ago






  • 1




    $begingroup$
    (6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
    $endgroup$
    – Mauro ALLEGRANZA
    5 hours ago







  • 1




    $begingroup$
    See Paul Benacerraf, What numbers could not be.
    $endgroup$
    – Mauro ALLEGRANZA
    5 hours ago












  • 2




    $begingroup$
    That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
    $endgroup$
    – Noah Schweber
    9 hours ago







  • 2




    $begingroup$
    I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
    $endgroup$
    – Don Thousand
    9 hours ago






  • 1




    $begingroup$
    (6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
    $endgroup$
    – Mauro ALLEGRANZA
    5 hours ago







  • 1




    $begingroup$
    See Paul Benacerraf, What numbers could not be.
    $endgroup$
    – Mauro ALLEGRANZA
    5 hours ago







2




2




$begingroup$
That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
$endgroup$
– Noah Schweber
9 hours ago





$begingroup$
That's a decent philosophical reasoning - although I can't speak to its historical accuracy, not being versed in the history myself - but never underestimate the role of sheer pragmatics: proper classes are weird and talking about sets of cardinal (or ordinal) numbers is important, so it is useful for the "number of elements" (and similar notions) of a set to also be a set rather than a class. It just ultimately reduces the "overhead cost" for the arguments we want to make. Again, I'm not versed in the history (hence this isn't an answer), but I suspect this did play a major role in the shift.
$endgroup$
– Noah Schweber
9 hours ago





2




2




$begingroup$
I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
$endgroup$
– Don Thousand
9 hours ago




$begingroup$
I think this approach, as Noah points out, fell out of favor when it became very obvious that unrestricted comprehensions are problematic, and classes are in general annoying to work with. So, it's a lot easier simply denoting a set to represent a given cardinality, and forcing any set with the same cardinality to share a bijection, rather than being a member of some class, that we don't even know much about.
$endgroup$
– Don Thousand
9 hours ago




1




1




$begingroup$
(6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
$endgroup$
– Mauro ALLEGRANZA
5 hours ago





$begingroup$
(6) "sounds" a little bit different IMO... The original proposal of Frege and Russell was also to solve the philosophical problem of "what numbers really are" (assuming that the question is meaningful...). The current set theory construction aims at defining inside the "universe" of sets a structure that has exactly all the properties of the natural number. From a mathematical point of view this is enough, but form the point of view of Frege and Russell it is quite doubtful to asserts that numbers are conjured out of the empty set.
$endgroup$
– Mauro ALLEGRANZA
5 hours ago





1




1




$begingroup$
See Paul Benacerraf, What numbers could not be.
$endgroup$
– Mauro ALLEGRANZA
5 hours ago




$begingroup$
See Paul Benacerraf, What numbers could not be.
$endgroup$
– Mauro ALLEGRANZA
5 hours ago










3 Answers
3






active

oldest

votes


















6












$begingroup$

The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




(1) numbers were higher-order properties, not of things , but of sets




Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




(2) Numbers are defined as equivalence classes




Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




(3) To identify each number class we would need a "standard" in each class.
(4) But the use requires us to admit the existence of the elements of these standards.
(5) We choose as standards sets whose elements exist "at minimal cost".
(6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




A few points:



  • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

  • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


(7) We finally put this set in order using the successor function




Oh dear, I seem to have gotten ahead of myself. ;)



Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



  • (1)/(2) would proceed as before;

  • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

  • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!





share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    @ J. G - Thanks for this clear and detailed answer.
    $endgroup$
    – Eleonore Saint James
    8 hours ago


















4












$begingroup$

The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    I don't know why this got downvoted. It cuts to the heart of the question.
    $endgroup$
    – TonyK
    9 hours ago










  • $begingroup$
    @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
    $endgroup$
    – Eleonore Saint James
    9 hours ago










  • $begingroup$
    @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    8 hours ago











  • $begingroup$
    @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
    $endgroup$
    – TonyK
    8 hours ago


















3












$begingroup$

The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



So we define $5$ iteratively as
$$0=emptyset$$
$$1=0$$
$$2=0,1$$
$$3=0,1,2$$
$$4=0,1,2,3$$
$$5=0,1,2,3,4$$



which are all well-defined Sets.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178282%2fwhy-has-russells-definition-of-numbers-using-equivalence-classes-been-finally-a%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




    (1) numbers were higher-order properties, not of things , but of sets




    Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




    (2) Numbers are defined as equivalence classes




    Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



    Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




    (3) To identify each number class we would need a "standard" in each class.
    (4) But the use requires us to admit the existence of the elements of these standards.
    (5) We choose as standards sets whose elements exist "at minimal cost".
    (6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




    A few points:



    • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

    • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


    (7) We finally put this set in order using the successor function




    Oh dear, I seem to have gotten ahead of myself. ;)



    Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



    • (1)/(2) would proceed as before;

    • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

    • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!





    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      @ J. G - Thanks for this clear and detailed answer.
      $endgroup$
      – Eleonore Saint James
      8 hours ago















    6












    $begingroup$

    The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




    (1) numbers were higher-order properties, not of things , but of sets




    Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




    (2) Numbers are defined as equivalence classes




    Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



    Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




    (3) To identify each number class we would need a "standard" in each class.
    (4) But the use requires us to admit the existence of the elements of these standards.
    (5) We choose as standards sets whose elements exist "at minimal cost".
    (6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




    A few points:



    • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

    • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


    (7) We finally put this set in order using the successor function




    Oh dear, I seem to have gotten ahead of myself. ;)



    Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



    • (1)/(2) would proceed as before;

    • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

    • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!





    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      @ J. G - Thanks for this clear and detailed answer.
      $endgroup$
      – Eleonore Saint James
      8 hours ago













    6












    6








    6





    $begingroup$

    The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




    (1) numbers were higher-order properties, not of things , but of sets




    Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




    (2) Numbers are defined as equivalence classes




    Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



    Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




    (3) To identify each number class we would need a "standard" in each class.
    (4) But the use requires us to admit the existence of the elements of these standards.
    (5) We choose as standards sets whose elements exist "at minimal cost".
    (6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




    A few points:



    • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

    • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


    (7) We finally put this set in order using the successor function




    Oh dear, I seem to have gotten ahead of myself. ;)



    Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



    • (1)/(2) would proceed as before;

    • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

    • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!





    share|cite|improve this answer









    $endgroup$



    The question might be a better fit for HSM.se but, until it's there, my answer won't focus on historical details so much as mathematical motives.




    (1) numbers were higher-order properties, not of things , but of sets




    Numbers are lots of things. Is the example above worth taking as a definition, axiom or theorem? You can try each approach, but we try to leave as much complicated machinery as possible to the later theorem-proving stage.




    (2) Numbers are defined as equivalence classes




    Which, after $0$, are "proper classes". I won't be terribly specific about that, because the details vary by your choice of set theory. But since we can't have a set of all sets that aren't elements of themselves, we have to say some collections of sets you can imagine aren't sets, and we typically say, ironically enough given the original motive for set theory, that sets are distinguished from proper classes in that they can be elements of classes.



    Eventually, we want to define integers as equivalence classes of ordered pairs of integers with the same difference between coordinates, e.g. $-3$ is the set of $(n+3,,n)$ for non-negative integers $n$. But $(a,,b):=a,,a,,b$ requires $a,,b$ to be elements of things, i.e. sets, so they can't be the enormous equivalence classes proposed in (2).




    (3) To identify each number class we would need a "standard" in each class.
    (4) But the use requires us to admit the existence of the elements of these standards.
    (5) We choose as standards sets whose elements exist "at minimal cost".
    (6) We finally abandon the definition of numbers as equivalence classes (with a special element as standard) and define directly each number by its "standard".




    A few points:



    • If you think about it, (3) immediately allows us to jump to (6) and thereby obviate (2), regardless of whether you make the observations in (4), (5).

    • Defining $0:=,,Sn:=ncupn$ and putting these into a thing called $omega$ with no further elements, and claiming $omega$ is a set, is something we already do in just about every interesting set theory's axiom of infinity (although I imagine some prefer a slightly different formulation). We don't do that because we're trying to solve the problem Russell was thinking about; we do it because a lot of interesting mathematics requires infinities. And that one axiom lets us skip all of (1)-(5) and never do any "philosophy" at all.


    (7) We finally put this set in order using the successor function




    Oh dear, I seem to have gotten ahead of myself. ;)



    Finally, let's note that none of this lets us decide what the equivalent to (1)-(7) would be for infinite sets' sizes. What is the representative set equinumerous to $Bbb N$, for example, or to $Bbb C$? Roughly speaking, it would go like this:



    • (1)/(2) would proceed as before;

    • For (3)-(6)'s choice of cardinals, see here. Long story short, the details vary by the set theory used (and to an extent the model thereof), but that link gives the gist of it;

    • (7)'s a bit trickier, and in some set theories you can't even order all the set sizes!






    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 9 hours ago









    J.G.J.G.

    32.9k23250




    32.9k23250







    • 1




      $begingroup$
      @ J. G - Thanks for this clear and detailed answer.
      $endgroup$
      – Eleonore Saint James
      8 hours ago












    • 1




      $begingroup$
      @ J. G - Thanks for this clear and detailed answer.
      $endgroup$
      – Eleonore Saint James
      8 hours ago







    1




    1




    $begingroup$
    @ J. G - Thanks for this clear and detailed answer.
    $endgroup$
    – Eleonore Saint James
    8 hours ago




    $begingroup$
    @ J. G - Thanks for this clear and detailed answer.
    $endgroup$
    – Eleonore Saint James
    8 hours ago











    4












    $begingroup$

    The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I don't know why this got downvoted. It cuts to the heart of the question.
      $endgroup$
      – TonyK
      9 hours ago










    • $begingroup$
      @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
      $endgroup$
      – Eleonore Saint James
      9 hours ago










    • $begingroup$
      @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
      $endgroup$
      – Martín-Blas Pérez Pinilla
      8 hours ago











    • $begingroup$
      @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
      $endgroup$
      – TonyK
      8 hours ago















    4












    $begingroup$

    The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I don't know why this got downvoted. It cuts to the heart of the question.
      $endgroup$
      – TonyK
      9 hours ago










    • $begingroup$
      @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
      $endgroup$
      – Eleonore Saint James
      9 hours ago










    • $begingroup$
      @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
      $endgroup$
      – Martín-Blas Pérez Pinilla
      8 hours ago











    • $begingroup$
      @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
      $endgroup$
      – TonyK
      8 hours ago













    4












    4








    4





    $begingroup$

    The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.






    share|cite|improve this answer









    $endgroup$



    The main (unique?) motivation has zero relation with your (4). The definition of numbers as equivalence classes has a very big technical problem: the equivalence classes themselves are "too big", namely, proper classes.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 9 hours ago









    Martín-Blas Pérez PinillaMartín-Blas Pérez Pinilla

    35.4k42972




    35.4k42972







    • 1




      $begingroup$
      I don't know why this got downvoted. It cuts to the heart of the question.
      $endgroup$
      – TonyK
      9 hours ago










    • $begingroup$
      @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
      $endgroup$
      – Eleonore Saint James
      9 hours ago










    • $begingroup$
      @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
      $endgroup$
      – Martín-Blas Pérez Pinilla
      8 hours ago











    • $begingroup$
      @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
      $endgroup$
      – TonyK
      8 hours ago












    • 1




      $begingroup$
      I don't know why this got downvoted. It cuts to the heart of the question.
      $endgroup$
      – TonyK
      9 hours ago










    • $begingroup$
      @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
      $endgroup$
      – Eleonore Saint James
      9 hours ago










    • $begingroup$
      @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
      $endgroup$
      – Martín-Blas Pérez Pinilla
      8 hours ago











    • $begingroup$
      @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
      $endgroup$
      – TonyK
      8 hours ago







    1




    1




    $begingroup$
    I don't know why this got downvoted. It cuts to the heart of the question.
    $endgroup$
    – TonyK
    9 hours ago




    $begingroup$
    I don't know why this got downvoted. It cuts to the heart of the question.
    $endgroup$
    – TonyK
    9 hours ago












    $begingroup$
    @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
    $endgroup$
    – Eleonore Saint James
    9 hours ago




    $begingroup$
    @ TonyK @ Martin Bias - What was downvoted? Personnaly, I upvote your both answers.
    $endgroup$
    – Eleonore Saint James
    9 hours ago












    $begingroup$
    @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    8 hours ago





    $begingroup$
    @EleonoreSaintJames, my answer as two upvotes (you, TonyK) and a downvote. The other upvote of TonyK is also mine.
    $endgroup$
    – Martín-Blas Pérez Pinilla
    8 hours ago













    $begingroup$
    @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
    $endgroup$
    – TonyK
    8 hours ago




    $begingroup$
    @EleonoreSaintJames: Once you reach a certain reputation, you can click on the vote counter to see the number of upvotes and downvotes. This answer currently has two upvotes (from you and me!) and one downvote.
    $endgroup$
    – TonyK
    8 hours ago











    3












    $begingroup$

    The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



    The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



    So we define $5$ iteratively as
    $$0=emptyset$$
    $$1=0$$
    $$2=0,1$$
    $$3=0,1,2$$
    $$4=0,1,2,3$$
    $$5=0,1,2,3,4$$



    which are all well-defined Sets.






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



      The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



      So we define $5$ iteratively as
      $$0=emptyset$$
      $$1=0$$
      $$2=0,1$$
      $$3=0,1,2$$
      $$4=0,1,2,3$$
      $$5=0,1,2,3,4$$



      which are all well-defined Sets.






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



        The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



        So we define $5$ iteratively as
        $$0=emptyset$$
        $$1=0$$
        $$2=0,1$$
        $$3=0,1,2$$
        $$4=0,1,2,3$$
        $$5=0,1,2,3,4$$



        which are all well-defined Sets.






        share|cite|improve this answer









        $endgroup$



        The problem is not that the original definition requires the existence of the elements of the standards (Thumb, Index etc.) If we have a reasonable Set Theory, we can always find a set with five elements.



        The problem is that the equivalence class so defined is a proper Class, not a Set; and the aim is to construct as much mathematics as possible using Sets only, as constructed using the Axioms that we allow ourselves.



        So we define $5$ iteratively as
        $$0=emptyset$$
        $$1=0$$
        $$2=0,1$$
        $$3=0,1,2$$
        $$4=0,1,2,3$$
        $$5=0,1,2,3,4$$



        which are all well-defined Sets.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 9 hours ago









        TonyKTonyK

        43.9k358137




        43.9k358137



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178282%2fwhy-has-russells-definition-of-numbers-using-equivalence-classes-been-finally-a%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

            Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

            Tom Holland Mục lục Đầu đời và giáo dục | Sự nghiệp | Cuộc sống cá nhân | Phim tham gia | Giải thưởng và đề cử | Chú thích | Liên kết ngoài | Trình đơn chuyển hướngProfile“Person Details for Thomas Stanley Holland, "England and Wales Birth Registration Index, 1837-2008" — FamilySearch.org”"Meet Tom Holland... the 16-year-old star of The Impossible""Schoolboy actor Tom Holland finds himself in Oscar contention for role in tsunami drama"“Naomi Watts on the Prince William and Harry's reaction to her film about the late Princess Diana”lưu trữ"Holland and Pflueger Are West End's Two New 'Billy Elliots'""I'm so envious of my son, the movie star! British writer Dominic Holland's spent 20 years trying to crack Hollywood - but he's been beaten to it by a very unlikely rival"“Richard and Margaret Povey of Jersey, Channel Islands, UK: Information about Thomas Stanley Holland”"Tom Holland to play Billy Elliot""New Billy Elliot leaving the garage"Billy Elliot the Musical - Tom Holland - Billy"A Tale of four Billys: Tom Holland""The Feel Good Factor""Thames Christian College schoolboys join Myleene Klass for The Feelgood Factor""Government launches £600,000 arts bursaries pilot""BILLY's Chapman, Holland, Gardner & Jackson-Keen Visit Prime Minister""Elton John 'blown away' by Billy Elliot fifth birthday" (video with John's interview and fragments of Holland's performance)"First News interviews Arrietty's Tom Holland"“33rd Critics' Circle Film Awards winners”“National Board of Review Current Awards”Bản gốc"Ron Howard Whaling Tale 'In The Heart Of The Sea' Casts Tom Holland"“'Spider-Man' Finds Tom Holland to Star as New Web-Slinger”lưu trữ“Captain America: Civil War (2016)”“Film Review: ‘Captain America: Civil War’”lưu trữ“‘Captain America: Civil War’ review: Choose your own avenger”lưu trữ“The Lost City of Z reviews”“Sony Pictures and Marvel Studios Find Their 'Spider-Man' Star and Director”“‘Mary Magdalene’, ‘Current War’ & ‘Wind River’ Get 2017 Release Dates From Weinstein”“Lionsgate Unleashing Daisy Ridley & Tom Holland Starrer ‘Chaos Walking’ In Cannes”“PTA's 'Master' Leads Chicago Film Critics Nominations, UPDATED: Houston and Indiana Critics Nominations”“Nominaciones Goya 2013 Telecinco Cinema – ENG”“Jameson Empire Film Awards: Martin Freeman wins best actor for performance in The Hobbit”“34th Annual Young Artist Awards”Bản gốc“Teen Choice Awards 2016—Captain America: Civil War Leads Second Wave of Nominations”“BAFTA Film Award Nominations: ‘La La Land’ Leads Race”“Saturn Awards Nominations 2017: 'Rogue One,' 'Walking Dead' Lead”Tom HollandTom HollandTom HollandTom Hollandmedia.gettyimages.comWorldCat Identities300279794no20130442900000 0004 0355 42791085670554170004732cb16706349t(data)XX5557367