How is this relation reflexive?Need help counting equivalence classes.Is this relation reflexive, symmetric and transitive?Proving an equivalence relation(specifically transitivity)Equivalence relation example. How is this even reflexive?Where is the transistivity in this equivalence relationIdentity relation vs Reflexive RelationHow is this an equivalence relation?truefalse claims in relations and equivalence relationsHow is this case a reflexive relation?Is this relation reflexive if it “chains” to itself?

What is the offset in a seaplane's hull?

What Brexit solution does the DUP want?

Download, install and reboot computer at night if needed

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

Is it possible to do 50 km distance without any previous training?

How long does it take to type this?

Copycat chess is back

Why is the design of haulage companies so “special”?

The use of multiple foreign keys on same column in SQL Server

Could a US political party gain complete control over the government by removing checks & balances?

What do you call a Matrix-like slowdown and camera movement effect?

Can I interfere when another PC is about to be attacked?

Schwarzchild Radius of the Universe

Why don't electron-positron collisions release infinite energy?

Validation accuracy vs Testing accuracy

Can a German sentence have two subjects?

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

How to type dʒ symbol (IPA) on Mac?

Patience, young "Padovan"

Simulate Bitwise Cyclic Tag

Can I make popcorn with any corn?

Circuitry of TV splitters

What defenses are there against being summoned by the Gate spell?



How is this relation reflexive?


Need help counting equivalence classes.Is this relation reflexive, symmetric and transitive?Proving an equivalence relation(specifically transitivity)Equivalence relation example. How is this even reflexive?Where is the transistivity in this equivalence relationIdentity relation vs Reflexive RelationHow is this an equivalence relation?truefalse claims in relations and equivalence relationsHow is this case a reflexive relation?Is this relation reflexive if it “chains” to itself?













8












$begingroup$


Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.



Prove that $mathcalR$ is an equivalence relation on $mathcalX$.



From my understanding, the definition of reflexive is:



$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



However, for this problem, you can have the relation with these two sets:



$1$ and $1,2$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.










share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
    $endgroup$
    – Mauro ALLEGRANZA
    8 hours ago






  • 5




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    8 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
    $endgroup$
    – qbuffer
    7 hours ago











  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    6 hours ago















8












$begingroup$


Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.



Prove that $mathcalR$ is an equivalence relation on $mathcalX$.



From my understanding, the definition of reflexive is:



$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



However, for this problem, you can have the relation with these two sets:



$1$ and $1,2$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.










share|cite|improve this question









$endgroup$







  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
    $endgroup$
    – Mauro ALLEGRANZA
    8 hours ago






  • 5




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    8 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
    $endgroup$
    – qbuffer
    7 hours ago











  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    6 hours ago













8












8








8





$begingroup$


Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.



Prove that $mathcalR$ is an equivalence relation on $mathcalX$.



From my understanding, the definition of reflexive is:



$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



However, for this problem, you can have the relation with these two sets:



$1$ and $1,2$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.










share|cite|improve this question









$endgroup$




Let $mathcalX$ be the set of all nonempty subsets of the set $1,2,3,...,10$. Define the relation $mathcalR$ on $mathcalX$ by: $forall A, B in mathcalX, A mathcalR B$ iff the smallest element of $A$ is equal to the smallest element of $B$. For example, $1,2,3 mathcalR 1,3,5,8$ because the smallest element of $1,2,3$ is $1$ which is also the smallest element of $1,3,5,8$.



Prove that $mathcalR$ is an equivalence relation on $mathcalX$.



From my understanding, the definition of reflexive is:



$$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



However, for this problem, you can have the relation with these two sets:



$1$ and $1,2$



Then wouldn't this not be reflexive since $2$ is not in the first set, but is in the second set?



I'm having trouble seeing how this is reflexive. Getting confused by the definition here.







discrete-mathematics relations equivalence-relations






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 8 hours ago









qbufferqbuffer

625




625







  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
    $endgroup$
    – Mauro ALLEGRANZA
    8 hours ago






  • 5




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    8 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
    $endgroup$
    – qbuffer
    7 hours ago











  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    6 hours ago












  • 4




    $begingroup$
    Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
    $endgroup$
    – Mauro ALLEGRANZA
    8 hours ago






  • 5




    $begingroup$
    Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
    $endgroup$
    – Arturo Magidin
    8 hours ago










  • $begingroup$
    So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
    $endgroup$
    – qbuffer
    7 hours ago











  • $begingroup$
    @qbuffer Have a look at the updated version of my answer.
    $endgroup$
    – Haris Gusic
    6 hours ago







4




4




$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
8 hours ago




$begingroup$
Reflexive means that every element is related to itself. Thus, for reflexivity you have to consider one set only. Ok, we have that $ 1 mathcal R 1,2 $ but we have also $ 1 mathcal R 1 $ and $ 1,2 mathcal R 1,2 $
$endgroup$
– Mauro ALLEGRANZA
8 hours ago




5




5




$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
8 hours ago




$begingroup$
Note: “reflexive” does not mean that if $x$ is related to $y$, then $x=y$. It means that if $x=y$, then $x$ is related to $y$.
$endgroup$
– Arturo Magidin
8 hours ago












$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
7 hours ago





$begingroup$
So it must be reflexive because both $A$ and $B$ belong to the same set $mathcalX$?
$endgroup$
– qbuffer
7 hours ago













$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
6 hours ago




$begingroup$
@qbuffer Have a look at the updated version of my answer.
$endgroup$
– Haris Gusic
6 hours ago










2 Answers
2






active

oldest

votes


















8












$begingroup$

Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.






share|cite|improve this answer











$endgroup$




















    4












    $begingroup$

    A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



    Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178532%2fhow-is-this-relation-reflexive%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      8












      $begingroup$

      Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



      To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



      You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.






      share|cite|improve this answer











      $endgroup$

















        8












        $begingroup$

        Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



        To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



        You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.






        share|cite|improve this answer











        $endgroup$















          8












          8








          8





          $begingroup$

          Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



          To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



          You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.






          share|cite|improve this answer











          $endgroup$



          Why are you testing reflexivity by looking at two different elements of $mathcalX$? The definition of reflexivity says that a relation is reflexive iff each element of $mathcal X$ is in relation with itself.



          To check whether $mathcal R$ is reflexive, just take one element of $mathcal X$, let's call it $x$. Then check whether $x$ is in relation with $x$. Because $x=x$, the smallest element of $x$ is equal to the smallest element of $x$. Thus, by definition of $mathcal R$, $x$ is in relation with $x$. Now, prove that this is true for all $x in mathcal X$. Of course, this is true because $min(x) = min(x)$ is always true, which is intuitive. In other words, $x mathcalR x$ for all $x in mathcal X$, which is exactly what you needed to prove that $mathcal R$ is reflexive.



          You must understand that the definition of reflexivity says nothing about whether different elements (say $x,y$, $xneq y$) can be in the relation $mathcal R$. The fact that $1mathcal R 1,2$ does not contradict the fact that $1,2mathcal R 1,2$ as well.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 6 hours ago

























          answered 8 hours ago









          Haris GusicHaris Gusic

          3,331525




          3,331525





















              4












              $begingroup$

              A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



              Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






              share|cite|improve this answer









              $endgroup$

















                4












                $begingroup$

                A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



                Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






                share|cite|improve this answer









                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



                  Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.






                  share|cite|improve this answer









                  $endgroup$



                  A binary relation $R$ over a set $mathcalX$ is reflexive if every element of $mathcalX$ is related to itself. The more formal definition has already been given by you, i.e. $$mathcalR text is reflexive iff forall x in mathcalX, x mathcalR x$$



                  Note here that you've picked two different elements of the set to make your comparison when you should be comparing an element with itself. Also make sure you understand that an element may be related to other elements as well, reflexivity does not forbid that. It just says that every element must be related to itself.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 8 hours ago









                  s0ulr3aper07s0ulr3aper07

                  658112




                  658112



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178532%2fhow-is-this-relation-reflexive%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                      Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                      199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單