Why CLRS example on residual networks does not follows its formula?Why is the complexity of negative-cycle-cancelling $O(V^2AUW)$?CLRS - Maxflow Augmented Flow Lemma 26.1 - don't understand use of def. in proofFord-Fulkerson algorithm clarificationLinear programming formulation of cheapest k-edge path between two nodesWhy is it that the flow value can increased along an augmenting path $p$ in a residual network?Maximum flow with Edmonds–Karp algorithmHow would one construct conjunctively local predicate of order k for checking if a shape is Convex?Equivalence of minimum cost circulation problem and minimum cost max flow problemGiven max-flow determine if edge is in a min-cutWhat is the intuition behind the way of reading off a dual optimal solution from simplex primal tabular in CLRS?

How can the DM most effectively choose 1 out of an odd number of players to be targeted by an attack or effect?

Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).

Is it possible to do 50 km distance without any previous training?

What Brexit solution does the DUP want?

Compute hash value according to multiplication method

Possibly bubble sort algorithm

Validation accuracy vs Testing accuracy

Draw simple lines in Inkscape

Pronouncing Dictionary.com's W.O.D "vade mecum" in English

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

A function which translates a sentence to title-case

What do you call a Matrix-like slowdown and camera movement effect?

Is there really no realistic way for a skeleton monster to move around without magic?

What makes Graph invariants so useful/important?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

What is the command to reset a PC without deleting any files

Can I make popcorn with any corn?

Is it possible to make sharp wind that can cut stuff from afar?

What would the Romans have called "sorcery"?

Why is an old chain unsafe?

Why are 150k or 200k jobs considered good when there are 300k+ births a month?

What is the logic behind how bash tests for true/false?

"You are your self first supporter", a more proper way to say it



Why CLRS example on residual networks does not follows its formula?


Why is the complexity of negative-cycle-cancelling $O(V^2AUW)$?CLRS - Maxflow Augmented Flow Lemma 26.1 - don't understand use of def. in proofFord-Fulkerson algorithm clarificationLinear programming formulation of cheapest k-edge path between two nodesWhy is it that the flow value can increased along an augmenting path $p$ in a residual network?Maximum flow with Edmonds–Karp algorithmHow would one construct conjunctively local predicate of order k for checking if a shape is Convex?Equivalence of minimum cost circulation problem and minimum cost max flow problemGiven max-flow determine if edge is in a min-cutWhat is the intuition behind the way of reading off a dual optimal solution from simplex primal tabular in CLRS?













1












$begingroup$


I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



figure 26.4



That is:




A flow in a residual network provides a roadmap for adding flow to the
original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
the corresponding residual network $G_f$, we define $f uparrow f'$,
the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
$R$, defined by



$$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
> textif (u,v) $in$ E \ 0 & textotherwise endcases$$




How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
If we follow the formula, it must have a flow 5:
$8 + 5 - 8 = 5$










share|cite|improve this question









$endgroup$
















    1












    $begingroup$


    I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



    figure 26.4



    That is:




    A flow in a residual network provides a roadmap for adding flow to the
    original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
    the corresponding residual network $G_f$, we define $f uparrow f'$,
    the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
    $R$, defined by



    $$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
    > textif (u,v) $in$ E \ 0 & textotherwise endcases$$




    How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
    If we follow the formula, it must have a flow 5:
    $8 + 5 - 8 = 5$










    share|cite|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



      figure 26.4



      That is:




      A flow in a residual network provides a roadmap for adding flow to the
      original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
      the corresponding residual network $G_f$, we define $f uparrow f'$,
      the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
      $R$, defined by



      $$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
      > textif (u,v) $in$ E \ 0 & textotherwise endcases$$




      How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
      If we follow the formula, it must have a flow 5:
      $8 + 5 - 8 = 5$










      share|cite|improve this question









      $endgroup$




      I am learning algorithms to solve Maximum Flow problem by reading the CRLS book and confused by the following figure:



      figure 26.4



      That is:




      A flow in a residual network provides a roadmap for adding flow to the
      original flow network. If $f$ is a flow in $G$ and $f'$ is a flow in
      the corresponding residual network $G_f$, we define $f uparrow f'$,
      the augmentation of flow $f$ by $f'$, to be a function from $V times V$ to
      $R$, defined by



      $$(f uparrow f')(u, v) = begincases f(u,v) + f'(u, v) - f'(v, u) &
      > textif (u,v) $in$ E \ 0 & textotherwise endcases$$




      How the flow network in (c), for example $(s, v_2)$ got the flow 12 ?
      If we follow the formula, it must have a flow 5:
      $8 + 5 - 8 = 5$







      algorithms network-flow






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 9 hours ago









      maksadbekmaksadbek

      1185




      1185




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






          share|cite|improve this answer









          $endgroup$




















            3












            $begingroup$

            It is explained in part (b) of the caption of Figure 26.4.




            The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




            Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
            $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






            share|cite|improve this answer











            $endgroup$








            • 2




              $begingroup$
              I think you mean $=12$ not $=8$.
              $endgroup$
              – D.W.
              7 hours ago











            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "419"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106608%2fwhy-clrs-example-on-residual-networks-does-not-follows-its-formula%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






            share|cite|improve this answer









            $endgroup$

















              4












              $begingroup$

              That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






              share|cite|improve this answer









              $endgroup$















                4












                4








                4





                $begingroup$

                That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.






                share|cite|improve this answer









                $endgroup$



                That's not what the formula gives you. As the caption says, the capacity of the augmenting path in the residual network in (b) is $4$. Therefore we send 4 units of flow along the augmenting path from $s$ to $t$, namely, the path $s to v_2 to v_3 to t$. In particular, $f(s,v_2)=8$, $f'(s,v_2)=4$, and $f'(v_2,s)=0$, so the updated flow is $8+4-0=12$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 7 hours ago









                D.W.D.W.

                103k12129294




                103k12129294





















                    3












                    $begingroup$

                    It is explained in part (b) of the caption of Figure 26.4.




                    The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                    Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                    $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






                    share|cite|improve this answer











                    $endgroup$








                    • 2




                      $begingroup$
                      I think you mean $=12$ not $=8$.
                      $endgroup$
                      – D.W.
                      7 hours ago















                    3












                    $begingroup$

                    It is explained in part (b) of the caption of Figure 26.4.




                    The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                    Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                    $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






                    share|cite|improve this answer











                    $endgroup$








                    • 2




                      $begingroup$
                      I think you mean $=12$ not $=8$.
                      $endgroup$
                      – D.W.
                      7 hours ago













                    3












                    3








                    3





                    $begingroup$

                    It is explained in part (b) of the caption of Figure 26.4.




                    The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                    Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                    $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$






                    share|cite|improve this answer











                    $endgroup$



                    It is explained in part (b) of the caption of Figure 26.4.




                    The residual network $G_f$ with augmenting path $p$ shaded; its residual capacity is $c_f(p)=c_f(v_2,v_3)=4$.




                    Since the capacity of path $p$ is 4 (not 5), we find a flow $f'$ in the residual network $G_f$ that is defined by $f'(s,v_2)=f'(v_2,v_3)=f'(v_3,t)=4$. So for the network flow $fuparrow f'$ in (c), we have
                    $$ (fuparrow f')(v_2, v_3)=f(v_2,v_3)+f'(v_2,v_3) = 8+4=12.$$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 7 hours ago

























                    answered 7 hours ago









                    Apass.JackApass.Jack

                    14k1940




                    14k1940







                    • 2




                      $begingroup$
                      I think you mean $=12$ not $=8$.
                      $endgroup$
                      – D.W.
                      7 hours ago












                    • 2




                      $begingroup$
                      I think you mean $=12$ not $=8$.
                      $endgroup$
                      – D.W.
                      7 hours ago







                    2




                    2




                    $begingroup$
                    I think you mean $=12$ not $=8$.
                    $endgroup$
                    – D.W.
                    7 hours ago




                    $begingroup$
                    I think you mean $=12$ not $=8$.
                    $endgroup$
                    – D.W.
                    7 hours ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106608%2fwhy-clrs-example-on-residual-networks-does-not-follows-its-formula%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                    Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                    199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單