How to handle columns with categorical data and many unique values2019 Community Moderator Electiondecision trees on mix of categorical and real value parametersPandas categorical variables encoding for regression (one-hot encoding vs dummy encoding)Imputation of missing values and dealing with categorical valuesHow to deal with categorical variablesOne hot encoding error “sort.list(y)…”One hot encoding vs Word embeddingHow to implement feature selection for categorical variables (especially with many categories)?ML Models: How to handle categorical feature with over 1000 unique values“Binary Encoding” in “Decision Tree” / “Random Forest” AlgorithmsDealing with multiple distinct-value categorical variables

Calculate Levenshtein distance between two strings in Python

Add an angle to a sphere

Could Giant Ground Sloths have been a good pack animal for the ancient Mayans?

What does "enim et" mean?

Does bootstrapped regression allow for inference?

"My colleague's body is amazing"

Does a dangling wire really electrocute me if I'm standing in water?

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

Re-submission of rejected manuscript without informing co-authors

Is it wise to focus on putting odd beats on left when playing double bass drums?

How could a lack of term limits lead to a "dictatorship?"

How to deal with fear of taking dependencies

Does the average primeness of natural numbers tend to zero?

Is there a way to make member function NOT callable from constructor?

LWC and complex parameters

Lied on resume at previous job

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

I see my dog run

What is GPS' 19 year rollover and does it present a cybersecurity issue?

Why is my log file so massive? 22gb. I am running log backups

Email Account under attack (really) - anything I can do?

Prime joint compound before latex paint?

Is every set a filtered colimit of finite sets?

Is Social Media Science Fiction?



How to handle columns with categorical data and many unique values



2019 Community Moderator Electiondecision trees on mix of categorical and real value parametersPandas categorical variables encoding for regression (one-hot encoding vs dummy encoding)Imputation of missing values and dealing with categorical valuesHow to deal with categorical variablesOne hot encoding error “sort.list(y)…”One hot encoding vs Word embeddingHow to implement feature selection for categorical variables (especially with many categories)?ML Models: How to handle categorical feature with over 1000 unique values“Binary Encoding” in “Decision Tree” / “Random Forest” AlgorithmsDealing with multiple distinct-value categorical variables










3












$begingroup$


I have a column with categorical data with nunique 3349 values, in a 18000k row dataset, which represent cities of the world.



I also have another column with 145 nunique values that I could also use in my model that represents product category.



Can I use one hot encoding to these columns or there's a problem with that solution?
Like which is the max number of unique values to use one hot encoding so there's not gonna be any problem ?



Can you point me to the right direction if I should use another encoding also?










share|improve this question









$endgroup$
















    3












    $begingroup$


    I have a column with categorical data with nunique 3349 values, in a 18000k row dataset, which represent cities of the world.



    I also have another column with 145 nunique values that I could also use in my model that represents product category.



    Can I use one hot encoding to these columns or there's a problem with that solution?
    Like which is the max number of unique values to use one hot encoding so there's not gonna be any problem ?



    Can you point me to the right direction if I should use another encoding also?










    share|improve this question









    $endgroup$














      3












      3








      3


      0



      $begingroup$


      I have a column with categorical data with nunique 3349 values, in a 18000k row dataset, which represent cities of the world.



      I also have another column with 145 nunique values that I could also use in my model that represents product category.



      Can I use one hot encoding to these columns or there's a problem with that solution?
      Like which is the max number of unique values to use one hot encoding so there's not gonna be any problem ?



      Can you point me to the right direction if I should use another encoding also?










      share|improve this question









      $endgroup$




      I have a column with categorical data with nunique 3349 values, in a 18000k row dataset, which represent cities of the world.



      I also have another column with 145 nunique values that I could also use in my model that represents product category.



      Can I use one hot encoding to these columns or there's a problem with that solution?
      Like which is the max number of unique values to use one hot encoding so there's not gonna be any problem ?



      Can you point me to the right direction if I should use another encoding also?







      machine-learning data categorical-data encoding






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 16 hours ago









      dungeondungeon

      293




      293




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          For categorical columns, you have two options :



          1. Entity Embeddings

          2. One Hot Vector

          For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.



          Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.



          Articles that explain Embeddings :



          • An Overview of Categorical Input Handling for Neural Networks


          • On learning embeddings for categorical data using Keras


          • Google Developers > Machine Learning > Embeddings: Categorical Input Data


          • Exploring Embeddings for Categorical Variables with Keras by Florian Teschner






          share|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "557"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48875%2fhow-to-handle-columns-with-categorical-data-and-many-unique-values%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            For categorical columns, you have two options :



            1. Entity Embeddings

            2. One Hot Vector

            For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.



            Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.



            Articles that explain Embeddings :



            • An Overview of Categorical Input Handling for Neural Networks


            • On learning embeddings for categorical data using Keras


            • Google Developers > Machine Learning > Embeddings: Categorical Input Data


            • Exploring Embeddings for Categorical Variables with Keras by Florian Teschner






            share|improve this answer











            $endgroup$

















              4












              $begingroup$

              For categorical columns, you have two options :



              1. Entity Embeddings

              2. One Hot Vector

              For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.



              Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.



              Articles that explain Embeddings :



              • An Overview of Categorical Input Handling for Neural Networks


              • On learning embeddings for categorical data using Keras


              • Google Developers > Machine Learning > Embeddings: Categorical Input Data


              • Exploring Embeddings for Categorical Variables with Keras by Florian Teschner






              share|improve this answer











              $endgroup$















                4












                4








                4





                $begingroup$

                For categorical columns, you have two options :



                1. Entity Embeddings

                2. One Hot Vector

                For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.



                Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.



                Articles that explain Embeddings :



                • An Overview of Categorical Input Handling for Neural Networks


                • On learning embeddings for categorical data using Keras


                • Google Developers > Machine Learning > Embeddings: Categorical Input Data


                • Exploring Embeddings for Categorical Variables with Keras by Florian Teschner






                share|improve this answer











                $endgroup$



                For categorical columns, you have two options :



                1. Entity Embeddings

                2. One Hot Vector

                For a column with 145 values, I would use one hot encoding and Embedding for ~3k values. This decision might change depending on overall number of features.



                Embeddings map feature values into a 1D vector so that model knows NYC, Paris, London are similar cities in one aspect (size) and very different in other aspects. So, instead of using ~3k column of features, model will have ~50 columns of vector representation.



                Articles that explain Embeddings :



                • An Overview of Categorical Input Handling for Neural Networks


                • On learning embeddings for categorical data using Keras


                • Google Developers > Machine Learning > Embeddings: Categorical Input Data


                • Exploring Embeddings for Categorical Variables with Keras by Florian Teschner







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 12 hours ago

























                answered 15 hours ago









                Shamit VermaShamit Verma

                1,4841214




                1,4841214



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Data Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fdatascience.stackexchange.com%2fquestions%2f48875%2fhow-to-handle-columns-with-categorical-data-and-many-unique-values%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                    Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                    Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її