How to find the determinant of this matrix? (A spherical-Cartesian transformation Jacobian matrix)How to compute the following JacobianCalculating the Jacobian of inverse functionsMatrix calculation with sinusoidsUsing the Jacobian matrix to find surface area without a change of basis.Transforming vector field into spherical coordinates. Why and how does this method work?Compute the determinant of circulant matrix with entries $cos jtheta$Find the rotation/reflection angle for orthogonal matrix AJacobian matrix vs. Transformation matrixFurthest point in direction ellipsoid with Newton's methodCalculate the determinant of this $5 times 5$ matrixWhat is the correct matrix form for transforming spherical coordinate to Cartesian?
Piano - What is the notation for a double stop where both notes in the double stop are different lengths?
Prime joint compound before latex paint?
Domain expired, GoDaddy holds it and is asking more money
Calculate Levenshtein distance between two strings in Python
"My colleague's body is amazing"
What does 'script /dev/null' do?
Could Giant Ground Sloths have been a good pack animal for the ancient Mayans?
How to make payment on the internet without leaving a money trail?
Crop image to path created in TikZ?
"listening to me about as much as you're listening to this pole here"
Doomsday-clock for my fantasy planet
Why is the design of haulage companies so “special”?
Is there a name of the flying bionic bird?
Is it wise to focus on putting odd beats on left when playing double bass drums?
Why doesn't a const reference extend the life of a temporary object passed via a function?
I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine
Lied on resume at previous job
What is the command to reset a PC without deleting any files
Re-submission of rejected manuscript without informing co-authors
Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?
How can I fix this gap between bookcases I made?
Are cabin dividers used to "hide" the flex of the airplane?
How to answer pointed "are you quitting" questioning when I don't want them to suspect
Is this food a bread or a loaf?
How to find the determinant of this matrix? (A spherical-Cartesian transformation Jacobian matrix)
How to compute the following JacobianCalculating the Jacobian of inverse functionsMatrix calculation with sinusoidsUsing the Jacobian matrix to find surface area without a change of basis.Transforming vector field into spherical coordinates. Why and how does this method work?Compute the determinant of circulant matrix with entries $cos jtheta$Find the rotation/reflection angle for orthogonal matrix AJacobian matrix vs. Transformation matrixFurthest point in direction ellipsoid with Newton's methodCalculate the determinant of this $5 times 5$ matrixWhat is the correct matrix form for transforming spherical coordinate to Cartesian?
$begingroup$
I meet a difficult determinant question as the followings:
$$
textMatrix A is given as:
$$
$$
A=beginbmatrixfracpartial xpartial r&fracpartial xpartialtheta&fracpartial xpartialphi\fracpartial ypartial r&fracpartial ypartialtheta&fracpartial ypartialphi\fracpartial zpartial r&fracpartial zpartialtheta&fracpartial zpartialphiendbmatrix
$$
$$
textwhere x=rsinthetacosphitext, y=rsinthetasinphitext, and z=rcostheta.text Find determinants det(A)text, det(A^-1)text, and det(A^2).
$$
I tried to simplify it, but just got:
$$
A=beginbmatrixsinthetacosphi&rcosthetacosphi&-rsinthetasinphi\sinthetasinphi&rcosthetasinphi&rsinthetacosphi\costheta&-rsintheta&0endbmatrix
$$
Because it is wired, I have also searched the Internet. But till now all I know is that this is just a spherical-Cartesian transformation formula using Jacobian matrix. (Maybe we can make a breakthough here?)
I can only solve $det(A)$ by directly calculating it, $det(A)=r^2sintheta$ .
However, I think it is still hard to find the inverse matrix, needless to say the huge calculation to get $A^2$. As I think, there must be some ways to simplify it.
Could anyone kindly teach me that whether there is any way to simplify $A$, so as to calculate the determinant?Thank you!
linear-algebra matrices determinant
New contributor
$endgroup$
add a comment |
$begingroup$
I meet a difficult determinant question as the followings:
$$
textMatrix A is given as:
$$
$$
A=beginbmatrixfracpartial xpartial r&fracpartial xpartialtheta&fracpartial xpartialphi\fracpartial ypartial r&fracpartial ypartialtheta&fracpartial ypartialphi\fracpartial zpartial r&fracpartial zpartialtheta&fracpartial zpartialphiendbmatrix
$$
$$
textwhere x=rsinthetacosphitext, y=rsinthetasinphitext, and z=rcostheta.text Find determinants det(A)text, det(A^-1)text, and det(A^2).
$$
I tried to simplify it, but just got:
$$
A=beginbmatrixsinthetacosphi&rcosthetacosphi&-rsinthetasinphi\sinthetasinphi&rcosthetasinphi&rsinthetacosphi\costheta&-rsintheta&0endbmatrix
$$
Because it is wired, I have also searched the Internet. But till now all I know is that this is just a spherical-Cartesian transformation formula using Jacobian matrix. (Maybe we can make a breakthough here?)
I can only solve $det(A)$ by directly calculating it, $det(A)=r^2sintheta$ .
However, I think it is still hard to find the inverse matrix, needless to say the huge calculation to get $A^2$. As I think, there must be some ways to simplify it.
Could anyone kindly teach me that whether there is any way to simplify $A$, so as to calculate the determinant?Thank you!
linear-algebra matrices determinant
New contributor
$endgroup$
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
15 hours ago
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
14 hours ago
add a comment |
$begingroup$
I meet a difficult determinant question as the followings:
$$
textMatrix A is given as:
$$
$$
A=beginbmatrixfracpartial xpartial r&fracpartial xpartialtheta&fracpartial xpartialphi\fracpartial ypartial r&fracpartial ypartialtheta&fracpartial ypartialphi\fracpartial zpartial r&fracpartial zpartialtheta&fracpartial zpartialphiendbmatrix
$$
$$
textwhere x=rsinthetacosphitext, y=rsinthetasinphitext, and z=rcostheta.text Find determinants det(A)text, det(A^-1)text, and det(A^2).
$$
I tried to simplify it, but just got:
$$
A=beginbmatrixsinthetacosphi&rcosthetacosphi&-rsinthetasinphi\sinthetasinphi&rcosthetasinphi&rsinthetacosphi\costheta&-rsintheta&0endbmatrix
$$
Because it is wired, I have also searched the Internet. But till now all I know is that this is just a spherical-Cartesian transformation formula using Jacobian matrix. (Maybe we can make a breakthough here?)
I can only solve $det(A)$ by directly calculating it, $det(A)=r^2sintheta$ .
However, I think it is still hard to find the inverse matrix, needless to say the huge calculation to get $A^2$. As I think, there must be some ways to simplify it.
Could anyone kindly teach me that whether there is any way to simplify $A$, so as to calculate the determinant?Thank you!
linear-algebra matrices determinant
New contributor
$endgroup$
I meet a difficult determinant question as the followings:
$$
textMatrix A is given as:
$$
$$
A=beginbmatrixfracpartial xpartial r&fracpartial xpartialtheta&fracpartial xpartialphi\fracpartial ypartial r&fracpartial ypartialtheta&fracpartial ypartialphi\fracpartial zpartial r&fracpartial zpartialtheta&fracpartial zpartialphiendbmatrix
$$
$$
textwhere x=rsinthetacosphitext, y=rsinthetasinphitext, and z=rcostheta.text Find determinants det(A)text, det(A^-1)text, and det(A^2).
$$
I tried to simplify it, but just got:
$$
A=beginbmatrixsinthetacosphi&rcosthetacosphi&-rsinthetasinphi\sinthetasinphi&rcosthetasinphi&rsinthetacosphi\costheta&-rsintheta&0endbmatrix
$$
Because it is wired, I have also searched the Internet. But till now all I know is that this is just a spherical-Cartesian transformation formula using Jacobian matrix. (Maybe we can make a breakthough here?)
I can only solve $det(A)$ by directly calculating it, $det(A)=r^2sintheta$ .
However, I think it is still hard to find the inverse matrix, needless to say the huge calculation to get $A^2$. As I think, there must be some ways to simplify it.
Could anyone kindly teach me that whether there is any way to simplify $A$, so as to calculate the determinant?Thank you!
linear-algebra matrices determinant
linear-algebra matrices determinant
New contributor
New contributor
edited 15 hours ago
Peter Nova
New contributor
asked 15 hours ago
Peter NovaPeter Nova
284
284
New contributor
New contributor
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
15 hours ago
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
14 hours ago
add a comment |
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
15 hours ago
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
14 hours ago
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
15 hours ago
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
15 hours ago
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
14 hours ago
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
14 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
$endgroup$
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
14 hours ago
add a comment |
$begingroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
$endgroup$
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
14 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179472%2fhow-to-find-the-determinant-of-this-matrix-a-spherical-cartesian-transformatio%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
$endgroup$
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
14 hours ago
add a comment |
$begingroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
$endgroup$
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
14 hours ago
add a comment |
$begingroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
$endgroup$
By using the Rule of Sarrus,
$$beginalign
det(A)&=(sinthetacosphi)(rcosthetasinphi)(0)\
&,,,+(sinthetasinphi)(-rsintheta)(-rsinthetasinphi)\
&,,,+(costheta)(rcosthetacosphi)(rsinthetacosphi)\
&,,,-(-rsinthetasinphi)(rcosthetasinphi)(costheta)\
&,,,-(rsinthetacosphi)(-rsintheta)(sinthetacosphi)\
&,,,-(0)(rcosthetacosphi)(sinthetasinphi)\
&=0+r^2sin^3thetasin^2phi+r^2sinthetacos^2thetacos^2phi+r^2sinthetasin^2phicos^2theta+r^2sin^3thetacos^2phi-0\
&=r^2sin^3theta(sin^2phi+cos^2phi)+r^2sinthetacos^2theta(sin^2phi+cos^2phi)\
&=r^2sin^3theta+r^2sinthetacos^2theta\
&=r^2sintheta(sin^2theta+cos^2theta)\
&boxed=r^2sintheta\
endalign$$
Now in order to find $det(A^-1)$ and $det(A^2)$ we can use the fact that $det(AB)=det(A)cdotdet(B)$ to get
$$det(I)=det(AA^-1)=det(A)det(A^-1)=r^2sinthetadet(A^-1)=1$$
$$therefore det(A^-1)=frac1r^2sintheta$$
$$det(A^2)=(det(A))^2=(r^2sintheta)^2=r^4sin^2theta$$
answered 14 hours ago
Peter ForemanPeter Foreman
6,4461317
6,4461317
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
14 hours ago
add a comment |
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
14 hours ago
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
14 hours ago
$begingroup$
Thank you so much! I thought too much on determinant calculation and simplification, but ignored the most important thing -- A is also a matrix. Thank you! I will remember this lesson.
$endgroup$
– Peter Nova
14 hours ago
add a comment |
$begingroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
$endgroup$
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
14 hours ago
add a comment |
$begingroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
$endgroup$
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
14 hours ago
add a comment |
$begingroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
$endgroup$
If you were really clever (e.g., if you already knew the answer, or thought hard about what a Jacobian in a different coordinate system represents), you could compute $det(A)$ by computing $det(B)det(A) = det (BA)$, where $det B$ was particularly easy.
Picking
$$
B = pmatrixcos phi & sin phi & 0 \
-sin phi & cos phi, & 0 \
0 & 0 & 1
$$
generates a matrix $BA$ whose form is rather simpler than that of $A$ (there's no $phi$, for instance!), while $det B$ is evidently $1$.
But I thing the question-asker's intent here is that you're just supposed to do the algebra and practice trig simplification.
answered 14 hours ago
John HughesJohn Hughes
65.3k24293
65.3k24293
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
14 hours ago
add a comment |
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
14 hours ago
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
14 hours ago
$begingroup$
Yeah... I just only thought about the calculation method from a determinant prospect, just want to somehow simplify it. But I ignored A is also a matrix... Thank you for your answer too! (But I think maybe I cannot think up this B immediately =-O , I will fight in the future study)
$endgroup$
– Peter Nova
14 hours ago
add a comment |
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Peter Nova is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179472%2fhow-to-find-the-determinant-of-this-matrix-a-spherical-cartesian-transformatio%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Why can't you "solve" (=calculate?) $det A$? It's bare for calculation.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Thank you @Saucy O'Path, it is true that we just need to calculate, then we could get det(A)=r^2sinθ. I initially thought that maybe we could simplify A by add/sub the row/cow of the matrix to make things easier......
$endgroup$
– Peter Nova
15 hours ago
$begingroup$
Nah, it's largely a matter of grouping all the $sin^2+cos^2$ that appear when you make the products.
$endgroup$
– Saucy O'Path
15 hours ago
$begingroup$
Of course you can calculate the determinant by reducing it using properties of determinant (like this for example). This is a standard result.
$endgroup$
– StubbornAtom
14 hours ago