Identifying the following distributionHow do I find a variance-stabilizing transformation?Can I say anything about the shape of the posterior distribution?Distribution of the Rayleigh quotientPenalised linear regression - residuals distribution assumptionsCan anyone suggest a distribution for this histogramIdentifying a distribution

Where on Earth is it easiest to survive in the wilderness?

Is mathematics truth?

Was "The Hobbit" ever abridged?

RAW, Is the "Finesse" trait incompatible with unarmed attacks?

Bidirectional Dictionary

Why are all volatile liquids combustible

What's this constructed number's starter?

Numerical minimum of a one-valued function

What are some countries where you can be imprisoned for reading or owning a Bible?

Did the US Climate Reference Network Show No New Warming Since 2005 in the US?

Undefined Hamiltonian for this particular Lagrangian

How do I delete cookies from a specific site?

Why does the std::find for vector return a iterator instead of the integer position

How do I make my fill-in-the-blank exercise more obvious?

A Meal fit for a King

Mute single speaker?

Shoes for commuting

What's the eccentricity of an orbit (trajectory) falling straight down towards the center?

Why does the UK Prime Minister need the permission of Parliament to call a general election?

What drugs were used in England during the High Middle Ages?

Why don't they build airplanes from 3D printer plastic?

How do I stop making people jump at home and at work?

How can I oppose my advisor granting gift authorship to a collaborator?

GFI outlets tripped after power outage



Identifying the following distribution


How do I find a variance-stabilizing transformation?Can I say anything about the shape of the posterior distribution?Distribution of the Rayleigh quotientPenalised linear regression - residuals distribution assumptionsCan anyone suggest a distribution for this histogramIdentifying a distribution






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








4












$begingroup$


I have a distribution, which I initially assumed to be a Rayleigh, but it almost certainly isn't. Before I consider convolutions of various distributions, e.g. Rayleigh convolved with Boltzmann, Rayleigh convolved with Gaussian and so on, I was hoping someone with a good eye might be able to identify it:



enter image description here



I have plotted the data with a Rayleigh on top of it to illustrate that it is somewhat similar but clearly this isn't the distribution.




I've been asked to provide a little more information about the data. The data itself are fit residuals from a freqeuncy spectrum. The units of the residuals are in $rmdBV_pk$, the definition of which is $rmdBV_pk = 10log_10(V^2_pk)$.



I have converted the residuals from $rmdBV_pk$ to $V^2_pk$ by $V^2_pk = 10^rmdBV_pk / 10$ and this is what is shown in the histogram.



I initially assumed a Rayleigh as the original spectrum is an FFT, which transforms a signal with real and imaginary parts (both of which are Gaussian distributed) and the absolute value of the FFT is taken, which is exactly how a Rayleigh is produced.




I again will add some further details outlining my motivation.



I have some FFT spectra, which I know the general lineshape of. I want to get an understanding on the noise that is on top of the lineshape, so I look at the fit residuals. The idea being that if I know how the residuals of a spectra are distributed, I can then add it to the lineshape model for simulation purposes. I don't want to add my noise in logorithmic units, i.e. $rmdBV_pk$, it is preferable to do this in $V_pk^2$.



The data I have provided are the residuals from 64 spectra, each having 801 residual points.



I can of course just perform a KDE of this and use this for simulation but it is nice to understand where this profile comes from. For example if one has flat white noise in the frequency domain, and convert this to linear units this is absolutely a Rayleigh distribution -- emerging because the real and imaginary parts of the signal are Gaussian distributed and one always takes the absolute magnitude of a resultant FFT -- Rayleigh!!



I would like to find a similar argument flow for this case.










share|cite|improve this question











$endgroup$









  • 5




    $begingroup$
    Is your goal a parsimonious approximate description of the data or a distribution based on first principles from physical laws?
    $endgroup$
    – COOLSerdash
    8 hours ago







  • 1




    $begingroup$
    FWIW, the original residuals are distributed remarkably like a Weibull distribution with shape parameter 5.56, appropriately shifted and scaled. They are a tiny bit heavier in the left tail.
    $endgroup$
    – whuber
    8 hours ago






  • 1




    $begingroup$
    @Irish Since you asked for the data, it behooves you to look at them. Although there is serial correlation out to lag 2, there is no "remarkable dependency." Q.P. These details are important and useful. Please edit your post so that it describes your data accurately.
    $endgroup$
    – whuber
    8 hours ago







  • 1




    $begingroup$
    You can easily convert any description of the original residuals into an equivalent description of their exponentials. There is much more to be seen in the original values, so I recommend sticking with them for the time being. It would also help to see one of those spectra and to learn how you processed them: I would expect (1) the residuals to be correlated with the detectable peaks and (2) their distribution to depend on the method used to fit the peaks.
    $endgroup$
    – whuber
    8 hours ago






  • 1




    $begingroup$
    @whuber You are indeed correct a Weibul distribution fitted to the logarithmic residuals is a perfect fit!!!!
    $endgroup$
    – Q.P.
    7 hours ago

















4












$begingroup$


I have a distribution, which I initially assumed to be a Rayleigh, but it almost certainly isn't. Before I consider convolutions of various distributions, e.g. Rayleigh convolved with Boltzmann, Rayleigh convolved with Gaussian and so on, I was hoping someone with a good eye might be able to identify it:



enter image description here



I have plotted the data with a Rayleigh on top of it to illustrate that it is somewhat similar but clearly this isn't the distribution.




I've been asked to provide a little more information about the data. The data itself are fit residuals from a freqeuncy spectrum. The units of the residuals are in $rmdBV_pk$, the definition of which is $rmdBV_pk = 10log_10(V^2_pk)$.



I have converted the residuals from $rmdBV_pk$ to $V^2_pk$ by $V^2_pk = 10^rmdBV_pk / 10$ and this is what is shown in the histogram.



I initially assumed a Rayleigh as the original spectrum is an FFT, which transforms a signal with real and imaginary parts (both of which are Gaussian distributed) and the absolute value of the FFT is taken, which is exactly how a Rayleigh is produced.




I again will add some further details outlining my motivation.



I have some FFT spectra, which I know the general lineshape of. I want to get an understanding on the noise that is on top of the lineshape, so I look at the fit residuals. The idea being that if I know how the residuals of a spectra are distributed, I can then add it to the lineshape model for simulation purposes. I don't want to add my noise in logorithmic units, i.e. $rmdBV_pk$, it is preferable to do this in $V_pk^2$.



The data I have provided are the residuals from 64 spectra, each having 801 residual points.



I can of course just perform a KDE of this and use this for simulation but it is nice to understand where this profile comes from. For example if one has flat white noise in the frequency domain, and convert this to linear units this is absolutely a Rayleigh distribution -- emerging because the real and imaginary parts of the signal are Gaussian distributed and one always takes the absolute magnitude of a resultant FFT -- Rayleigh!!



I would like to find a similar argument flow for this case.










share|cite|improve this question











$endgroup$









  • 5




    $begingroup$
    Is your goal a parsimonious approximate description of the data or a distribution based on first principles from physical laws?
    $endgroup$
    – COOLSerdash
    8 hours ago







  • 1




    $begingroup$
    FWIW, the original residuals are distributed remarkably like a Weibull distribution with shape parameter 5.56, appropriately shifted and scaled. They are a tiny bit heavier in the left tail.
    $endgroup$
    – whuber
    8 hours ago






  • 1




    $begingroup$
    @Irish Since you asked for the data, it behooves you to look at them. Although there is serial correlation out to lag 2, there is no "remarkable dependency." Q.P. These details are important and useful. Please edit your post so that it describes your data accurately.
    $endgroup$
    – whuber
    8 hours ago







  • 1




    $begingroup$
    You can easily convert any description of the original residuals into an equivalent description of their exponentials. There is much more to be seen in the original values, so I recommend sticking with them for the time being. It would also help to see one of those spectra and to learn how you processed them: I would expect (1) the residuals to be correlated with the detectable peaks and (2) their distribution to depend on the method used to fit the peaks.
    $endgroup$
    – whuber
    8 hours ago






  • 1




    $begingroup$
    @whuber You are indeed correct a Weibul distribution fitted to the logarithmic residuals is a perfect fit!!!!
    $endgroup$
    – Q.P.
    7 hours ago













4












4








4


1



$begingroup$


I have a distribution, which I initially assumed to be a Rayleigh, but it almost certainly isn't. Before I consider convolutions of various distributions, e.g. Rayleigh convolved with Boltzmann, Rayleigh convolved with Gaussian and so on, I was hoping someone with a good eye might be able to identify it:



enter image description here



I have plotted the data with a Rayleigh on top of it to illustrate that it is somewhat similar but clearly this isn't the distribution.




I've been asked to provide a little more information about the data. The data itself are fit residuals from a freqeuncy spectrum. The units of the residuals are in $rmdBV_pk$, the definition of which is $rmdBV_pk = 10log_10(V^2_pk)$.



I have converted the residuals from $rmdBV_pk$ to $V^2_pk$ by $V^2_pk = 10^rmdBV_pk / 10$ and this is what is shown in the histogram.



I initially assumed a Rayleigh as the original spectrum is an FFT, which transforms a signal with real and imaginary parts (both of which are Gaussian distributed) and the absolute value of the FFT is taken, which is exactly how a Rayleigh is produced.




I again will add some further details outlining my motivation.



I have some FFT spectra, which I know the general lineshape of. I want to get an understanding on the noise that is on top of the lineshape, so I look at the fit residuals. The idea being that if I know how the residuals of a spectra are distributed, I can then add it to the lineshape model for simulation purposes. I don't want to add my noise in logorithmic units, i.e. $rmdBV_pk$, it is preferable to do this in $V_pk^2$.



The data I have provided are the residuals from 64 spectra, each having 801 residual points.



I can of course just perform a KDE of this and use this for simulation but it is nice to understand where this profile comes from. For example if one has flat white noise in the frequency domain, and convert this to linear units this is absolutely a Rayleigh distribution -- emerging because the real and imaginary parts of the signal are Gaussian distributed and one always takes the absolute magnitude of a resultant FFT -- Rayleigh!!



I would like to find a similar argument flow for this case.










share|cite|improve this question











$endgroup$




I have a distribution, which I initially assumed to be a Rayleigh, but it almost certainly isn't. Before I consider convolutions of various distributions, e.g. Rayleigh convolved with Boltzmann, Rayleigh convolved with Gaussian and so on, I was hoping someone with a good eye might be able to identify it:



enter image description here



I have plotted the data with a Rayleigh on top of it to illustrate that it is somewhat similar but clearly this isn't the distribution.




I've been asked to provide a little more information about the data. The data itself are fit residuals from a freqeuncy spectrum. The units of the residuals are in $rmdBV_pk$, the definition of which is $rmdBV_pk = 10log_10(V^2_pk)$.



I have converted the residuals from $rmdBV_pk$ to $V^2_pk$ by $V^2_pk = 10^rmdBV_pk / 10$ and this is what is shown in the histogram.



I initially assumed a Rayleigh as the original spectrum is an FFT, which transforms a signal with real and imaginary parts (both of which are Gaussian distributed) and the absolute value of the FFT is taken, which is exactly how a Rayleigh is produced.




I again will add some further details outlining my motivation.



I have some FFT spectra, which I know the general lineshape of. I want to get an understanding on the noise that is on top of the lineshape, so I look at the fit residuals. The idea being that if I know how the residuals of a spectra are distributed, I can then add it to the lineshape model for simulation purposes. I don't want to add my noise in logorithmic units, i.e. $rmdBV_pk$, it is preferable to do this in $V_pk^2$.



The data I have provided are the residuals from 64 spectra, each having 801 residual points.



I can of course just perform a KDE of this and use this for simulation but it is nice to understand where this profile comes from. For example if one has flat white noise in the frequency domain, and convert this to linear units this is absolutely a Rayleigh distribution -- emerging because the real and imaginary parts of the signal are Gaussian distributed and one always takes the absolute magnitude of a resultant FFT -- Rayleigh!!



I would like to find a similar argument flow for this case.







distributions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 6 hours ago







Q.P.

















asked 9 hours ago









Q.P.Q.P.

1798 bronze badges




1798 bronze badges










  • 5




    $begingroup$
    Is your goal a parsimonious approximate description of the data or a distribution based on first principles from physical laws?
    $endgroup$
    – COOLSerdash
    8 hours ago







  • 1




    $begingroup$
    FWIW, the original residuals are distributed remarkably like a Weibull distribution with shape parameter 5.56, appropriately shifted and scaled. They are a tiny bit heavier in the left tail.
    $endgroup$
    – whuber
    8 hours ago






  • 1




    $begingroup$
    @Irish Since you asked for the data, it behooves you to look at them. Although there is serial correlation out to lag 2, there is no "remarkable dependency." Q.P. These details are important and useful. Please edit your post so that it describes your data accurately.
    $endgroup$
    – whuber
    8 hours ago







  • 1




    $begingroup$
    You can easily convert any description of the original residuals into an equivalent description of their exponentials. There is much more to be seen in the original values, so I recommend sticking with them for the time being. It would also help to see one of those spectra and to learn how you processed them: I would expect (1) the residuals to be correlated with the detectable peaks and (2) their distribution to depend on the method used to fit the peaks.
    $endgroup$
    – whuber
    8 hours ago






  • 1




    $begingroup$
    @whuber You are indeed correct a Weibul distribution fitted to the logarithmic residuals is a perfect fit!!!!
    $endgroup$
    – Q.P.
    7 hours ago












  • 5




    $begingroup$
    Is your goal a parsimonious approximate description of the data or a distribution based on first principles from physical laws?
    $endgroup$
    – COOLSerdash
    8 hours ago







  • 1




    $begingroup$
    FWIW, the original residuals are distributed remarkably like a Weibull distribution with shape parameter 5.56, appropriately shifted and scaled. They are a tiny bit heavier in the left tail.
    $endgroup$
    – whuber
    8 hours ago






  • 1




    $begingroup$
    @Irish Since you asked for the data, it behooves you to look at them. Although there is serial correlation out to lag 2, there is no "remarkable dependency." Q.P. These details are important and useful. Please edit your post so that it describes your data accurately.
    $endgroup$
    – whuber
    8 hours ago







  • 1




    $begingroup$
    You can easily convert any description of the original residuals into an equivalent description of their exponentials. There is much more to be seen in the original values, so I recommend sticking with them for the time being. It would also help to see one of those spectra and to learn how you processed them: I would expect (1) the residuals to be correlated with the detectable peaks and (2) their distribution to depend on the method used to fit the peaks.
    $endgroup$
    – whuber
    8 hours ago






  • 1




    $begingroup$
    @whuber You are indeed correct a Weibul distribution fitted to the logarithmic residuals is a perfect fit!!!!
    $endgroup$
    – Q.P.
    7 hours ago







5




5




$begingroup$
Is your goal a parsimonious approximate description of the data or a distribution based on first principles from physical laws?
$endgroup$
– COOLSerdash
8 hours ago





$begingroup$
Is your goal a parsimonious approximate description of the data or a distribution based on first principles from physical laws?
$endgroup$
– COOLSerdash
8 hours ago





1




1




$begingroup$
FWIW, the original residuals are distributed remarkably like a Weibull distribution with shape parameter 5.56, appropriately shifted and scaled. They are a tiny bit heavier in the left tail.
$endgroup$
– whuber
8 hours ago




$begingroup$
FWIW, the original residuals are distributed remarkably like a Weibull distribution with shape parameter 5.56, appropriately shifted and scaled. They are a tiny bit heavier in the left tail.
$endgroup$
– whuber
8 hours ago




1




1




$begingroup$
@Irish Since you asked for the data, it behooves you to look at them. Although there is serial correlation out to lag 2, there is no "remarkable dependency." Q.P. These details are important and useful. Please edit your post so that it describes your data accurately.
$endgroup$
– whuber
8 hours ago





$begingroup$
@Irish Since you asked for the data, it behooves you to look at them. Although there is serial correlation out to lag 2, there is no "remarkable dependency." Q.P. These details are important and useful. Please edit your post so that it describes your data accurately.
$endgroup$
– whuber
8 hours ago





1




1




$begingroup$
You can easily convert any description of the original residuals into an equivalent description of their exponentials. There is much more to be seen in the original values, so I recommend sticking with them for the time being. It would also help to see one of those spectra and to learn how you processed them: I would expect (1) the residuals to be correlated with the detectable peaks and (2) their distribution to depend on the method used to fit the peaks.
$endgroup$
– whuber
8 hours ago




$begingroup$
You can easily convert any description of the original residuals into an equivalent description of their exponentials. There is much more to be seen in the original values, so I recommend sticking with them for the time being. It would also help to see one of those spectra and to learn how you processed them: I would expect (1) the residuals to be correlated with the detectable peaks and (2) their distribution to depend on the method used to fit the peaks.
$endgroup$
– whuber
8 hours ago




1




1




$begingroup$
@whuber You are indeed correct a Weibul distribution fitted to the logarithmic residuals is a perfect fit!!!!
$endgroup$
– Q.P.
7 hours ago




$begingroup$
@whuber You are indeed correct a Weibul distribution fitted to the logarithmic residuals is a perfect fit!!!!
$endgroup$
– Q.P.
7 hours ago










2 Answers
2






active

oldest

votes


















6














$begingroup$

For simulation purposes, a Weibull distribution may work well. Allow me to explain why and to say something about the limitations.



A plot of the original (unexponentiated) residuals immediately suggested a Weibull distribution to me. (One reason this family comes to mind is that it includes Rayleigh distributions, which are Weibull with shape parameter $2.$) The formula will depend on three parameters: a shape parameter plus a scale and location. A standard exploratory technique to test such a distributional hypothesis is the (quantile-quantile) probability plot: one draws a scatterplot of quantiles of the data against the same quantiles of a reference distribution. When this scatterplot is nearly linear, the data differ from the reference distribution only by a change of units--the scaling and recentering.



One exploratory way to find a good shape parameter is to adjust it until the probability plot looks as linear as possible. To avoid too much work, I used various approaches: only data from the first spectrum (optimal shape is $6.3$); equally spaced centiles of all data (optimum is $5.63$); and a variance-weighted version of the latter (optimum is $4.99$). There's little to choose from among those (they all fit the data pretty well). Taking the middle value produces the probability plot at the left:



Figure



The probability plot is exceptionally straight throughout its range, indicating a good fit.



The middle plot shows the corresponding Weibull frequency graph superimposed on the histogram. It tracks the peaks of the bars well, also suggesting a good fit. However, the corresponding chi-squared test indicates a little lack of fit ($chi^2=334.6,$ $p=2times 10^-15$ with $154$ degrees of freedom based on length-$0.1$ bins from $-8.5$ to $7.0$). To analyze the lack of fit I created a "rootogram" as invented by John Tukey. This displays the square roots of the histogram densities relative to the fitted distribution, thereby greatly magnifying the deviations of the data distribution above and below the fit. This is the right plot in the figure.



To interpret the rootogram, bear in mind that the square root of a count will, on average, be less than one unit from its expected value. You can see that's the case with most of the bars in the rootogram, confirming the previous good fits. In this plot, however, it is apparent that relative to the Weibull fit, the data are a little more numerous at the extremes and the center (the red positive bars) compared to the middle values (the blue negative bars), and this is a systematic, nearly symmetric pattern.



In this sense the Weibull description is not entirely adequate: we should not conclude there is some underlying physical law to explain a Weibull distribution of residuals. The Weibull shape is merely a mathematical convenience that succinctly describes these data very well. (There are other issues, such as the possibility of serial correlation of the residuals within each spectrum. There is some correlation, but it extends only for a couple of lags and therefore is unlikely to suggest any meaningful modification of the foregoing description.)



Ultimately, then, whether you use a Weibull distribution to simulate residuals (which you can exponentiate if you wish) depends on whether these small but systematic departures are important to capture in the simulation.



For the record, the Weibull distribution shown here has shape parameter $5.63,$ scale parameter $11.85,$ and is shifted by $-10.95.$ Because Weibull distributions are just power transformations of Exponential (that is, Gamma$(1)$) distributions, and Exponential random variates are easily obtained as the negative logarithms of the Uniform$(0,1)$ variates supplied by standard pseudorandom number generators in computing systems, it is easy and computationally cheap to generate Weibull variates. Specifically, letting $U$ have this Uniform distribution, simulate the (raw) residuals as



$$X = (-log(U))^1/5.63 * 11.85 - 10.95.$$



To illustrate this process, and to serve as a reference for interpreting the preceding data plots, I created a random sample in this manner of the same size as the original dataset ($801times 64$ values) and drew its histogram, the same Weibull frequency curve, and the corresponding rootogram.



Figure 2



The typical bar is between 0 and 1 in height--but this time, the bar heights appear to vary randomly and independently, rather than following the systematic pattern in the data rootogram.






share|cite|improve this answer











$endgroup$










  • 3




    $begingroup$
    Thanks for this extremely thorough answer, I especially like how you give reasons that we cannot infer anything specific about physical interpretation. This is slightly disappointing but you answered the original question quite perfectly!
    $endgroup$
    – Q.P.
    6 hours ago










  • $begingroup$
    (+1) What's the rationale for the $pm 1$ rule concerning the residuals in a rootogram? Tukey writes in his paper about rootograms: "Most of us know that square roots of counts are likely to be almost uniformly perturbed." Why is that? Has it something to do with variance stabilizing transformations for counts?
    $endgroup$
    – COOLSerdash
    6 hours ago







  • 2




    $begingroup$
    @COOL Poisson distributions. Recalling that a Poisson$(lambda)$ variate has mean and variance equal to $lambda,$ carrying out the variance-stabilizing analysis I sketched at stats.stackexchange.com/a/251661/919 indicates you should take the root of the variable. The variance ranges from about $0.402173$ (at $lambda=1$) down to $1/4$ for large $lambda.$ The 68-95-99.7 rule suggests most values will lie within $2timessqrt1/4=1$ of the mean. You can see this with quick simulations in R: for(lambda in c(1,3,10)) hist(sqrt(rpois(1e3, lambda))).
    $endgroup$
    – whuber
    6 hours ago










  • $begingroup$
    @whuber Great, thanks for the explanation!
    $endgroup$
    – COOLSerdash
    5 hours ago


















1














$begingroup$

Weibull Shape = 2, Scale = 1, Location = 0.2



I just did a hand-fit, but Weibull looks better than your Rayleigh.






share|cite|improve this answer









$endgroup$














  • $begingroup$
    Weibull is a good guess--but fit it to the logarithms of these values, not the values themselves.
    $endgroup$
    – whuber
    8 hours ago










  • $begingroup$
    @whuber, are you suggesting Weibull should only fit logarithmic data? Also, he added that he's using dB, which is inherently a logarithmic scale.
    $endgroup$
    – Ron Jensen
    8 hours ago






  • 1




    $begingroup$
    The Weibull is a poor fit to the exponentiated residuals--you can see that in the systematic and relatively large departures between your black curve and the orange bars--but a different Weibull distribution is a remarkably good fit to the original residuals.
    $endgroup$
    – whuber
    8 hours ago














Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "65"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f424948%2fidentifying-the-following-distribution%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6














$begingroup$

For simulation purposes, a Weibull distribution may work well. Allow me to explain why and to say something about the limitations.



A plot of the original (unexponentiated) residuals immediately suggested a Weibull distribution to me. (One reason this family comes to mind is that it includes Rayleigh distributions, which are Weibull with shape parameter $2.$) The formula will depend on three parameters: a shape parameter plus a scale and location. A standard exploratory technique to test such a distributional hypothesis is the (quantile-quantile) probability plot: one draws a scatterplot of quantiles of the data against the same quantiles of a reference distribution. When this scatterplot is nearly linear, the data differ from the reference distribution only by a change of units--the scaling and recentering.



One exploratory way to find a good shape parameter is to adjust it until the probability plot looks as linear as possible. To avoid too much work, I used various approaches: only data from the first spectrum (optimal shape is $6.3$); equally spaced centiles of all data (optimum is $5.63$); and a variance-weighted version of the latter (optimum is $4.99$). There's little to choose from among those (they all fit the data pretty well). Taking the middle value produces the probability plot at the left:



Figure



The probability plot is exceptionally straight throughout its range, indicating a good fit.



The middle plot shows the corresponding Weibull frequency graph superimposed on the histogram. It tracks the peaks of the bars well, also suggesting a good fit. However, the corresponding chi-squared test indicates a little lack of fit ($chi^2=334.6,$ $p=2times 10^-15$ with $154$ degrees of freedom based on length-$0.1$ bins from $-8.5$ to $7.0$). To analyze the lack of fit I created a "rootogram" as invented by John Tukey. This displays the square roots of the histogram densities relative to the fitted distribution, thereby greatly magnifying the deviations of the data distribution above and below the fit. This is the right plot in the figure.



To interpret the rootogram, bear in mind that the square root of a count will, on average, be less than one unit from its expected value. You can see that's the case with most of the bars in the rootogram, confirming the previous good fits. In this plot, however, it is apparent that relative to the Weibull fit, the data are a little more numerous at the extremes and the center (the red positive bars) compared to the middle values (the blue negative bars), and this is a systematic, nearly symmetric pattern.



In this sense the Weibull description is not entirely adequate: we should not conclude there is some underlying physical law to explain a Weibull distribution of residuals. The Weibull shape is merely a mathematical convenience that succinctly describes these data very well. (There are other issues, such as the possibility of serial correlation of the residuals within each spectrum. There is some correlation, but it extends only for a couple of lags and therefore is unlikely to suggest any meaningful modification of the foregoing description.)



Ultimately, then, whether you use a Weibull distribution to simulate residuals (which you can exponentiate if you wish) depends on whether these small but systematic departures are important to capture in the simulation.



For the record, the Weibull distribution shown here has shape parameter $5.63,$ scale parameter $11.85,$ and is shifted by $-10.95.$ Because Weibull distributions are just power transformations of Exponential (that is, Gamma$(1)$) distributions, and Exponential random variates are easily obtained as the negative logarithms of the Uniform$(0,1)$ variates supplied by standard pseudorandom number generators in computing systems, it is easy and computationally cheap to generate Weibull variates. Specifically, letting $U$ have this Uniform distribution, simulate the (raw) residuals as



$$X = (-log(U))^1/5.63 * 11.85 - 10.95.$$



To illustrate this process, and to serve as a reference for interpreting the preceding data plots, I created a random sample in this manner of the same size as the original dataset ($801times 64$ values) and drew its histogram, the same Weibull frequency curve, and the corresponding rootogram.



Figure 2



The typical bar is between 0 and 1 in height--but this time, the bar heights appear to vary randomly and independently, rather than following the systematic pattern in the data rootogram.






share|cite|improve this answer











$endgroup$










  • 3




    $begingroup$
    Thanks for this extremely thorough answer, I especially like how you give reasons that we cannot infer anything specific about physical interpretation. This is slightly disappointing but you answered the original question quite perfectly!
    $endgroup$
    – Q.P.
    6 hours ago










  • $begingroup$
    (+1) What's the rationale for the $pm 1$ rule concerning the residuals in a rootogram? Tukey writes in his paper about rootograms: "Most of us know that square roots of counts are likely to be almost uniformly perturbed." Why is that? Has it something to do with variance stabilizing transformations for counts?
    $endgroup$
    – COOLSerdash
    6 hours ago







  • 2




    $begingroup$
    @COOL Poisson distributions. Recalling that a Poisson$(lambda)$ variate has mean and variance equal to $lambda,$ carrying out the variance-stabilizing analysis I sketched at stats.stackexchange.com/a/251661/919 indicates you should take the root of the variable. The variance ranges from about $0.402173$ (at $lambda=1$) down to $1/4$ for large $lambda.$ The 68-95-99.7 rule suggests most values will lie within $2timessqrt1/4=1$ of the mean. You can see this with quick simulations in R: for(lambda in c(1,3,10)) hist(sqrt(rpois(1e3, lambda))).
    $endgroup$
    – whuber
    6 hours ago










  • $begingroup$
    @whuber Great, thanks for the explanation!
    $endgroup$
    – COOLSerdash
    5 hours ago















6














$begingroup$

For simulation purposes, a Weibull distribution may work well. Allow me to explain why and to say something about the limitations.



A plot of the original (unexponentiated) residuals immediately suggested a Weibull distribution to me. (One reason this family comes to mind is that it includes Rayleigh distributions, which are Weibull with shape parameter $2.$) The formula will depend on three parameters: a shape parameter plus a scale and location. A standard exploratory technique to test such a distributional hypothesis is the (quantile-quantile) probability plot: one draws a scatterplot of quantiles of the data against the same quantiles of a reference distribution. When this scatterplot is nearly linear, the data differ from the reference distribution only by a change of units--the scaling and recentering.



One exploratory way to find a good shape parameter is to adjust it until the probability plot looks as linear as possible. To avoid too much work, I used various approaches: only data from the first spectrum (optimal shape is $6.3$); equally spaced centiles of all data (optimum is $5.63$); and a variance-weighted version of the latter (optimum is $4.99$). There's little to choose from among those (they all fit the data pretty well). Taking the middle value produces the probability plot at the left:



Figure



The probability plot is exceptionally straight throughout its range, indicating a good fit.



The middle plot shows the corresponding Weibull frequency graph superimposed on the histogram. It tracks the peaks of the bars well, also suggesting a good fit. However, the corresponding chi-squared test indicates a little lack of fit ($chi^2=334.6,$ $p=2times 10^-15$ with $154$ degrees of freedom based on length-$0.1$ bins from $-8.5$ to $7.0$). To analyze the lack of fit I created a "rootogram" as invented by John Tukey. This displays the square roots of the histogram densities relative to the fitted distribution, thereby greatly magnifying the deviations of the data distribution above and below the fit. This is the right plot in the figure.



To interpret the rootogram, bear in mind that the square root of a count will, on average, be less than one unit from its expected value. You can see that's the case with most of the bars in the rootogram, confirming the previous good fits. In this plot, however, it is apparent that relative to the Weibull fit, the data are a little more numerous at the extremes and the center (the red positive bars) compared to the middle values (the blue negative bars), and this is a systematic, nearly symmetric pattern.



In this sense the Weibull description is not entirely adequate: we should not conclude there is some underlying physical law to explain a Weibull distribution of residuals. The Weibull shape is merely a mathematical convenience that succinctly describes these data very well. (There are other issues, such as the possibility of serial correlation of the residuals within each spectrum. There is some correlation, but it extends only for a couple of lags and therefore is unlikely to suggest any meaningful modification of the foregoing description.)



Ultimately, then, whether you use a Weibull distribution to simulate residuals (which you can exponentiate if you wish) depends on whether these small but systematic departures are important to capture in the simulation.



For the record, the Weibull distribution shown here has shape parameter $5.63,$ scale parameter $11.85,$ and is shifted by $-10.95.$ Because Weibull distributions are just power transformations of Exponential (that is, Gamma$(1)$) distributions, and Exponential random variates are easily obtained as the negative logarithms of the Uniform$(0,1)$ variates supplied by standard pseudorandom number generators in computing systems, it is easy and computationally cheap to generate Weibull variates. Specifically, letting $U$ have this Uniform distribution, simulate the (raw) residuals as



$$X = (-log(U))^1/5.63 * 11.85 - 10.95.$$



To illustrate this process, and to serve as a reference for interpreting the preceding data plots, I created a random sample in this manner of the same size as the original dataset ($801times 64$ values) and drew its histogram, the same Weibull frequency curve, and the corresponding rootogram.



Figure 2



The typical bar is between 0 and 1 in height--but this time, the bar heights appear to vary randomly and independently, rather than following the systematic pattern in the data rootogram.






share|cite|improve this answer











$endgroup$










  • 3




    $begingroup$
    Thanks for this extremely thorough answer, I especially like how you give reasons that we cannot infer anything specific about physical interpretation. This is slightly disappointing but you answered the original question quite perfectly!
    $endgroup$
    – Q.P.
    6 hours ago










  • $begingroup$
    (+1) What's the rationale for the $pm 1$ rule concerning the residuals in a rootogram? Tukey writes in his paper about rootograms: "Most of us know that square roots of counts are likely to be almost uniformly perturbed." Why is that? Has it something to do with variance stabilizing transformations for counts?
    $endgroup$
    – COOLSerdash
    6 hours ago







  • 2




    $begingroup$
    @COOL Poisson distributions. Recalling that a Poisson$(lambda)$ variate has mean and variance equal to $lambda,$ carrying out the variance-stabilizing analysis I sketched at stats.stackexchange.com/a/251661/919 indicates you should take the root of the variable. The variance ranges from about $0.402173$ (at $lambda=1$) down to $1/4$ for large $lambda.$ The 68-95-99.7 rule suggests most values will lie within $2timessqrt1/4=1$ of the mean. You can see this with quick simulations in R: for(lambda in c(1,3,10)) hist(sqrt(rpois(1e3, lambda))).
    $endgroup$
    – whuber
    6 hours ago










  • $begingroup$
    @whuber Great, thanks for the explanation!
    $endgroup$
    – COOLSerdash
    5 hours ago













6














6










6







$begingroup$

For simulation purposes, a Weibull distribution may work well. Allow me to explain why and to say something about the limitations.



A plot of the original (unexponentiated) residuals immediately suggested a Weibull distribution to me. (One reason this family comes to mind is that it includes Rayleigh distributions, which are Weibull with shape parameter $2.$) The formula will depend on three parameters: a shape parameter plus a scale and location. A standard exploratory technique to test such a distributional hypothesis is the (quantile-quantile) probability plot: one draws a scatterplot of quantiles of the data against the same quantiles of a reference distribution. When this scatterplot is nearly linear, the data differ from the reference distribution only by a change of units--the scaling and recentering.



One exploratory way to find a good shape parameter is to adjust it until the probability plot looks as linear as possible. To avoid too much work, I used various approaches: only data from the first spectrum (optimal shape is $6.3$); equally spaced centiles of all data (optimum is $5.63$); and a variance-weighted version of the latter (optimum is $4.99$). There's little to choose from among those (they all fit the data pretty well). Taking the middle value produces the probability plot at the left:



Figure



The probability plot is exceptionally straight throughout its range, indicating a good fit.



The middle plot shows the corresponding Weibull frequency graph superimposed on the histogram. It tracks the peaks of the bars well, also suggesting a good fit. However, the corresponding chi-squared test indicates a little lack of fit ($chi^2=334.6,$ $p=2times 10^-15$ with $154$ degrees of freedom based on length-$0.1$ bins from $-8.5$ to $7.0$). To analyze the lack of fit I created a "rootogram" as invented by John Tukey. This displays the square roots of the histogram densities relative to the fitted distribution, thereby greatly magnifying the deviations of the data distribution above and below the fit. This is the right plot in the figure.



To interpret the rootogram, bear in mind that the square root of a count will, on average, be less than one unit from its expected value. You can see that's the case with most of the bars in the rootogram, confirming the previous good fits. In this plot, however, it is apparent that relative to the Weibull fit, the data are a little more numerous at the extremes and the center (the red positive bars) compared to the middle values (the blue negative bars), and this is a systematic, nearly symmetric pattern.



In this sense the Weibull description is not entirely adequate: we should not conclude there is some underlying physical law to explain a Weibull distribution of residuals. The Weibull shape is merely a mathematical convenience that succinctly describes these data very well. (There are other issues, such as the possibility of serial correlation of the residuals within each spectrum. There is some correlation, but it extends only for a couple of lags and therefore is unlikely to suggest any meaningful modification of the foregoing description.)



Ultimately, then, whether you use a Weibull distribution to simulate residuals (which you can exponentiate if you wish) depends on whether these small but systematic departures are important to capture in the simulation.



For the record, the Weibull distribution shown here has shape parameter $5.63,$ scale parameter $11.85,$ and is shifted by $-10.95.$ Because Weibull distributions are just power transformations of Exponential (that is, Gamma$(1)$) distributions, and Exponential random variates are easily obtained as the negative logarithms of the Uniform$(0,1)$ variates supplied by standard pseudorandom number generators in computing systems, it is easy and computationally cheap to generate Weibull variates. Specifically, letting $U$ have this Uniform distribution, simulate the (raw) residuals as



$$X = (-log(U))^1/5.63 * 11.85 - 10.95.$$



To illustrate this process, and to serve as a reference for interpreting the preceding data plots, I created a random sample in this manner of the same size as the original dataset ($801times 64$ values) and drew its histogram, the same Weibull frequency curve, and the corresponding rootogram.



Figure 2



The typical bar is between 0 and 1 in height--but this time, the bar heights appear to vary randomly and independently, rather than following the systematic pattern in the data rootogram.






share|cite|improve this answer











$endgroup$



For simulation purposes, a Weibull distribution may work well. Allow me to explain why and to say something about the limitations.



A plot of the original (unexponentiated) residuals immediately suggested a Weibull distribution to me. (One reason this family comes to mind is that it includes Rayleigh distributions, which are Weibull with shape parameter $2.$) The formula will depend on three parameters: a shape parameter plus a scale and location. A standard exploratory technique to test such a distributional hypothesis is the (quantile-quantile) probability plot: one draws a scatterplot of quantiles of the data against the same quantiles of a reference distribution. When this scatterplot is nearly linear, the data differ from the reference distribution only by a change of units--the scaling and recentering.



One exploratory way to find a good shape parameter is to adjust it until the probability plot looks as linear as possible. To avoid too much work, I used various approaches: only data from the first spectrum (optimal shape is $6.3$); equally spaced centiles of all data (optimum is $5.63$); and a variance-weighted version of the latter (optimum is $4.99$). There's little to choose from among those (they all fit the data pretty well). Taking the middle value produces the probability plot at the left:



Figure



The probability plot is exceptionally straight throughout its range, indicating a good fit.



The middle plot shows the corresponding Weibull frequency graph superimposed on the histogram. It tracks the peaks of the bars well, also suggesting a good fit. However, the corresponding chi-squared test indicates a little lack of fit ($chi^2=334.6,$ $p=2times 10^-15$ with $154$ degrees of freedom based on length-$0.1$ bins from $-8.5$ to $7.0$). To analyze the lack of fit I created a "rootogram" as invented by John Tukey. This displays the square roots of the histogram densities relative to the fitted distribution, thereby greatly magnifying the deviations of the data distribution above and below the fit. This is the right plot in the figure.



To interpret the rootogram, bear in mind that the square root of a count will, on average, be less than one unit from its expected value. You can see that's the case with most of the bars in the rootogram, confirming the previous good fits. In this plot, however, it is apparent that relative to the Weibull fit, the data are a little more numerous at the extremes and the center (the red positive bars) compared to the middle values (the blue negative bars), and this is a systematic, nearly symmetric pattern.



In this sense the Weibull description is not entirely adequate: we should not conclude there is some underlying physical law to explain a Weibull distribution of residuals. The Weibull shape is merely a mathematical convenience that succinctly describes these data very well. (There are other issues, such as the possibility of serial correlation of the residuals within each spectrum. There is some correlation, but it extends only for a couple of lags and therefore is unlikely to suggest any meaningful modification of the foregoing description.)



Ultimately, then, whether you use a Weibull distribution to simulate residuals (which you can exponentiate if you wish) depends on whether these small but systematic departures are important to capture in the simulation.



For the record, the Weibull distribution shown here has shape parameter $5.63,$ scale parameter $11.85,$ and is shifted by $-10.95.$ Because Weibull distributions are just power transformations of Exponential (that is, Gamma$(1)$) distributions, and Exponential random variates are easily obtained as the negative logarithms of the Uniform$(0,1)$ variates supplied by standard pseudorandom number generators in computing systems, it is easy and computationally cheap to generate Weibull variates. Specifically, letting $U$ have this Uniform distribution, simulate the (raw) residuals as



$$X = (-log(U))^1/5.63 * 11.85 - 10.95.$$



To illustrate this process, and to serve as a reference for interpreting the preceding data plots, I created a random sample in this manner of the same size as the original dataset ($801times 64$ values) and drew its histogram, the same Weibull frequency curve, and the corresponding rootogram.



Figure 2



The typical bar is between 0 and 1 in height--but this time, the bar heights appear to vary randomly and independently, rather than following the systematic pattern in the data rootogram.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 6 hours ago

























answered 6 hours ago









whuberwhuber

216k34 gold badges477 silver badges868 bronze badges




216k34 gold badges477 silver badges868 bronze badges










  • 3




    $begingroup$
    Thanks for this extremely thorough answer, I especially like how you give reasons that we cannot infer anything specific about physical interpretation. This is slightly disappointing but you answered the original question quite perfectly!
    $endgroup$
    – Q.P.
    6 hours ago










  • $begingroup$
    (+1) What's the rationale for the $pm 1$ rule concerning the residuals in a rootogram? Tukey writes in his paper about rootograms: "Most of us know that square roots of counts are likely to be almost uniformly perturbed." Why is that? Has it something to do with variance stabilizing transformations for counts?
    $endgroup$
    – COOLSerdash
    6 hours ago







  • 2




    $begingroup$
    @COOL Poisson distributions. Recalling that a Poisson$(lambda)$ variate has mean and variance equal to $lambda,$ carrying out the variance-stabilizing analysis I sketched at stats.stackexchange.com/a/251661/919 indicates you should take the root of the variable. The variance ranges from about $0.402173$ (at $lambda=1$) down to $1/4$ for large $lambda.$ The 68-95-99.7 rule suggests most values will lie within $2timessqrt1/4=1$ of the mean. You can see this with quick simulations in R: for(lambda in c(1,3,10)) hist(sqrt(rpois(1e3, lambda))).
    $endgroup$
    – whuber
    6 hours ago










  • $begingroup$
    @whuber Great, thanks for the explanation!
    $endgroup$
    – COOLSerdash
    5 hours ago












  • 3




    $begingroup$
    Thanks for this extremely thorough answer, I especially like how you give reasons that we cannot infer anything specific about physical interpretation. This is slightly disappointing but you answered the original question quite perfectly!
    $endgroup$
    – Q.P.
    6 hours ago










  • $begingroup$
    (+1) What's the rationale for the $pm 1$ rule concerning the residuals in a rootogram? Tukey writes in his paper about rootograms: "Most of us know that square roots of counts are likely to be almost uniformly perturbed." Why is that? Has it something to do with variance stabilizing transformations for counts?
    $endgroup$
    – COOLSerdash
    6 hours ago







  • 2




    $begingroup$
    @COOL Poisson distributions. Recalling that a Poisson$(lambda)$ variate has mean and variance equal to $lambda,$ carrying out the variance-stabilizing analysis I sketched at stats.stackexchange.com/a/251661/919 indicates you should take the root of the variable. The variance ranges from about $0.402173$ (at $lambda=1$) down to $1/4$ for large $lambda.$ The 68-95-99.7 rule suggests most values will lie within $2timessqrt1/4=1$ of the mean. You can see this with quick simulations in R: for(lambda in c(1,3,10)) hist(sqrt(rpois(1e3, lambda))).
    $endgroup$
    – whuber
    6 hours ago










  • $begingroup$
    @whuber Great, thanks for the explanation!
    $endgroup$
    – COOLSerdash
    5 hours ago







3




3




$begingroup$
Thanks for this extremely thorough answer, I especially like how you give reasons that we cannot infer anything specific about physical interpretation. This is slightly disappointing but you answered the original question quite perfectly!
$endgroup$
– Q.P.
6 hours ago




$begingroup$
Thanks for this extremely thorough answer, I especially like how you give reasons that we cannot infer anything specific about physical interpretation. This is slightly disappointing but you answered the original question quite perfectly!
$endgroup$
– Q.P.
6 hours ago












$begingroup$
(+1) What's the rationale for the $pm 1$ rule concerning the residuals in a rootogram? Tukey writes in his paper about rootograms: "Most of us know that square roots of counts are likely to be almost uniformly perturbed." Why is that? Has it something to do with variance stabilizing transformations for counts?
$endgroup$
– COOLSerdash
6 hours ago





$begingroup$
(+1) What's the rationale for the $pm 1$ rule concerning the residuals in a rootogram? Tukey writes in his paper about rootograms: "Most of us know that square roots of counts are likely to be almost uniformly perturbed." Why is that? Has it something to do with variance stabilizing transformations for counts?
$endgroup$
– COOLSerdash
6 hours ago





2




2




$begingroup$
@COOL Poisson distributions. Recalling that a Poisson$(lambda)$ variate has mean and variance equal to $lambda,$ carrying out the variance-stabilizing analysis I sketched at stats.stackexchange.com/a/251661/919 indicates you should take the root of the variable. The variance ranges from about $0.402173$ (at $lambda=1$) down to $1/4$ for large $lambda.$ The 68-95-99.7 rule suggests most values will lie within $2timessqrt1/4=1$ of the mean. You can see this with quick simulations in R: for(lambda in c(1,3,10)) hist(sqrt(rpois(1e3, lambda))).
$endgroup$
– whuber
6 hours ago




$begingroup$
@COOL Poisson distributions. Recalling that a Poisson$(lambda)$ variate has mean and variance equal to $lambda,$ carrying out the variance-stabilizing analysis I sketched at stats.stackexchange.com/a/251661/919 indicates you should take the root of the variable. The variance ranges from about $0.402173$ (at $lambda=1$) down to $1/4$ for large $lambda.$ The 68-95-99.7 rule suggests most values will lie within $2timessqrt1/4=1$ of the mean. You can see this with quick simulations in R: for(lambda in c(1,3,10)) hist(sqrt(rpois(1e3, lambda))).
$endgroup$
– whuber
6 hours ago












$begingroup$
@whuber Great, thanks for the explanation!
$endgroup$
– COOLSerdash
5 hours ago




$begingroup$
@whuber Great, thanks for the explanation!
$endgroup$
– COOLSerdash
5 hours ago













1














$begingroup$

Weibull Shape = 2, Scale = 1, Location = 0.2



I just did a hand-fit, but Weibull looks better than your Rayleigh.






share|cite|improve this answer









$endgroup$














  • $begingroup$
    Weibull is a good guess--but fit it to the logarithms of these values, not the values themselves.
    $endgroup$
    – whuber
    8 hours ago










  • $begingroup$
    @whuber, are you suggesting Weibull should only fit logarithmic data? Also, he added that he's using dB, which is inherently a logarithmic scale.
    $endgroup$
    – Ron Jensen
    8 hours ago






  • 1




    $begingroup$
    The Weibull is a poor fit to the exponentiated residuals--you can see that in the systematic and relatively large departures between your black curve and the orange bars--but a different Weibull distribution is a remarkably good fit to the original residuals.
    $endgroup$
    – whuber
    8 hours ago
















1














$begingroup$

Weibull Shape = 2, Scale = 1, Location = 0.2



I just did a hand-fit, but Weibull looks better than your Rayleigh.






share|cite|improve this answer









$endgroup$














  • $begingroup$
    Weibull is a good guess--but fit it to the logarithms of these values, not the values themselves.
    $endgroup$
    – whuber
    8 hours ago










  • $begingroup$
    @whuber, are you suggesting Weibull should only fit logarithmic data? Also, he added that he's using dB, which is inherently a logarithmic scale.
    $endgroup$
    – Ron Jensen
    8 hours ago






  • 1




    $begingroup$
    The Weibull is a poor fit to the exponentiated residuals--you can see that in the systematic and relatively large departures between your black curve and the orange bars--but a different Weibull distribution is a remarkably good fit to the original residuals.
    $endgroup$
    – whuber
    8 hours ago














1














1










1







$begingroup$

Weibull Shape = 2, Scale = 1, Location = 0.2



I just did a hand-fit, but Weibull looks better than your Rayleigh.






share|cite|improve this answer









$endgroup$



Weibull Shape = 2, Scale = 1, Location = 0.2



I just did a hand-fit, but Weibull looks better than your Rayleigh.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 9 hours ago









Ron JensenRon Jensen

1338 bronze badges




1338 bronze badges














  • $begingroup$
    Weibull is a good guess--but fit it to the logarithms of these values, not the values themselves.
    $endgroup$
    – whuber
    8 hours ago










  • $begingroup$
    @whuber, are you suggesting Weibull should only fit logarithmic data? Also, he added that he's using dB, which is inherently a logarithmic scale.
    $endgroup$
    – Ron Jensen
    8 hours ago






  • 1




    $begingroup$
    The Weibull is a poor fit to the exponentiated residuals--you can see that in the systematic and relatively large departures between your black curve and the orange bars--but a different Weibull distribution is a remarkably good fit to the original residuals.
    $endgroup$
    – whuber
    8 hours ago

















  • $begingroup$
    Weibull is a good guess--but fit it to the logarithms of these values, not the values themselves.
    $endgroup$
    – whuber
    8 hours ago










  • $begingroup$
    @whuber, are you suggesting Weibull should only fit logarithmic data? Also, he added that he's using dB, which is inherently a logarithmic scale.
    $endgroup$
    – Ron Jensen
    8 hours ago






  • 1




    $begingroup$
    The Weibull is a poor fit to the exponentiated residuals--you can see that in the systematic and relatively large departures between your black curve and the orange bars--but a different Weibull distribution is a remarkably good fit to the original residuals.
    $endgroup$
    – whuber
    8 hours ago
















$begingroup$
Weibull is a good guess--but fit it to the logarithms of these values, not the values themselves.
$endgroup$
– whuber
8 hours ago




$begingroup$
Weibull is a good guess--but fit it to the logarithms of these values, not the values themselves.
$endgroup$
– whuber
8 hours ago












$begingroup$
@whuber, are you suggesting Weibull should only fit logarithmic data? Also, he added that he's using dB, which is inherently a logarithmic scale.
$endgroup$
– Ron Jensen
8 hours ago




$begingroup$
@whuber, are you suggesting Weibull should only fit logarithmic data? Also, he added that he's using dB, which is inherently a logarithmic scale.
$endgroup$
– Ron Jensen
8 hours ago




1




1




$begingroup$
The Weibull is a poor fit to the exponentiated residuals--you can see that in the systematic and relatively large departures between your black curve and the orange bars--but a different Weibull distribution is a remarkably good fit to the original residuals.
$endgroup$
– whuber
8 hours ago





$begingroup$
The Weibull is a poor fit to the exponentiated residuals--you can see that in the systematic and relatively large departures between your black curve and the orange bars--but a different Weibull distribution is a remarkably good fit to the original residuals.
$endgroup$
– whuber
8 hours ago


















draft saved

draft discarded
















































Thanks for contributing an answer to Cross Validated!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f424948%2fidentifying-the-following-distribution%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її