Injection into a proper class and choice without regularityAxiom of Choice and Order TypesProper class forcing vs forcing with a set of conditions bigger than one's modelHow big is the proper class of all sets?What is the order type of $L$ with Godel's well ordering?Minimal Generalized Continuum Hypothesis & Axiom of ChoiceOn the Axiom of Choice for Conglomerates and SkeletonsProper classes subnumerous to $V$ in a model of a Morse-Kelley related theoryAre classes still “larger” than sets without the axiom of choice?For which theories does ZFC without global choice prove the existence of a proper class monster model?“Surjective cardinals” - using surjections rather than injections to define isomorphism classes of sets

Injection into a proper class and choice without regularity


Axiom of Choice and Order TypesProper class forcing vs forcing with a set of conditions bigger than one's modelHow big is the proper class of all sets?What is the order type of $L$ with Godel's well ordering?Minimal Generalized Continuum Hypothesis & Axiom of ChoiceOn the Axiom of Choice for Conglomerates and SkeletonsProper classes subnumerous to $V$ in a model of a Morse-Kelley related theoryAre classes still “larger” than sets without the axiom of choice?For which theories does ZFC without global choice prove the existence of a proper class monster model?“Surjective cardinals” - using surjections rather than injections to define isomorphism classes of sets













5












$begingroup$


In $sf ZF$, we have that the axiom of choice is equivalent to:




For all sets $X$, and for all proper classes $Y$, $X$ inject into $Y$




and




For all sets $X$, and for all proper classes $Y$, $Y$ surject onto $X$




To see that those are indeed equivalent to choice we have for one direction to inject a set $X$ into $Ord$ and this will give well ordering for $X$(and because $Ord$ well ordered, we can easily construct an injective from $X$ to $Ord$ using a surjective from $Ord$ to $X$)



To see that the other direction is true, take a set $α$ and a class $Y$, because we are assuming $sf AC$ we may assume WLOG that $α∈Ord$. Then we may use induction to create a sequence $(x_β)$ of ordinals such that for $β<γ$ we have $Y∩V_x_βsubsetneq Y∩V_x_γ$, then we look at $V_x_α$, and by well ordering it find an injective $α→Y$(and surjective $Y→α$).



In the proof use relied heavily on the axiom of foundation, so we can ask are those 3 equivalent in $sf ZF^-$?



When talking with @Wojowu he told me that his intuition told him that $sf AC$ is not equivalent to the other 2, saying that he thinks that there is a model of $sf ZFC^-+mboxa proper class of atoms+mboxonly finite sets of atoms$, in which case no infinite set inject into the class of atoms, but after searching I couldn't find any reference to such model. My questions:



If such model exists, can someone direct me to a reference, or explain it's construction? If not, how those 2 behave in $sf ZF^-$?



What about the other 2? Does the surjective version implies the injective version in $sf ZF^-$?










share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    math.stackexchange.com/questions/1337583/… might be helpful?
    $endgroup$
    – Asaf Karagila
    4 hours ago















5












$begingroup$


In $sf ZF$, we have that the axiom of choice is equivalent to:




For all sets $X$, and for all proper classes $Y$, $X$ inject into $Y$




and




For all sets $X$, and for all proper classes $Y$, $Y$ surject onto $X$




To see that those are indeed equivalent to choice we have for one direction to inject a set $X$ into $Ord$ and this will give well ordering for $X$(and because $Ord$ well ordered, we can easily construct an injective from $X$ to $Ord$ using a surjective from $Ord$ to $X$)



To see that the other direction is true, take a set $α$ and a class $Y$, because we are assuming $sf AC$ we may assume WLOG that $α∈Ord$. Then we may use induction to create a sequence $(x_β)$ of ordinals such that for $β<γ$ we have $Y∩V_x_βsubsetneq Y∩V_x_γ$, then we look at $V_x_α$, and by well ordering it find an injective $α→Y$(and surjective $Y→α$).



In the proof use relied heavily on the axiom of foundation, so we can ask are those 3 equivalent in $sf ZF^-$?



When talking with @Wojowu he told me that his intuition told him that $sf AC$ is not equivalent to the other 2, saying that he thinks that there is a model of $sf ZFC^-+mboxa proper class of atoms+mboxonly finite sets of atoms$, in which case no infinite set inject into the class of atoms, but after searching I couldn't find any reference to such model. My questions:



If such model exists, can someone direct me to a reference, or explain it's construction? If not, how those 2 behave in $sf ZF^-$?



What about the other 2? Does the surjective version implies the injective version in $sf ZF^-$?










share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    math.stackexchange.com/questions/1337583/… might be helpful?
    $endgroup$
    – Asaf Karagila
    4 hours ago













5












5








5





$begingroup$


In $sf ZF$, we have that the axiom of choice is equivalent to:




For all sets $X$, and for all proper classes $Y$, $X$ inject into $Y$




and




For all sets $X$, and for all proper classes $Y$, $Y$ surject onto $X$




To see that those are indeed equivalent to choice we have for one direction to inject a set $X$ into $Ord$ and this will give well ordering for $X$(and because $Ord$ well ordered, we can easily construct an injective from $X$ to $Ord$ using a surjective from $Ord$ to $X$)



To see that the other direction is true, take a set $α$ and a class $Y$, because we are assuming $sf AC$ we may assume WLOG that $α∈Ord$. Then we may use induction to create a sequence $(x_β)$ of ordinals such that for $β<γ$ we have $Y∩V_x_βsubsetneq Y∩V_x_γ$, then we look at $V_x_α$, and by well ordering it find an injective $α→Y$(and surjective $Y→α$).



In the proof use relied heavily on the axiom of foundation, so we can ask are those 3 equivalent in $sf ZF^-$?



When talking with @Wojowu he told me that his intuition told him that $sf AC$ is not equivalent to the other 2, saying that he thinks that there is a model of $sf ZFC^-+mboxa proper class of atoms+mboxonly finite sets of atoms$, in which case no infinite set inject into the class of atoms, but after searching I couldn't find any reference to such model. My questions:



If such model exists, can someone direct me to a reference, or explain it's construction? If not, how those 2 behave in $sf ZF^-$?



What about the other 2? Does the surjective version implies the injective version in $sf ZF^-$?










share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




In $sf ZF$, we have that the axiom of choice is equivalent to:




For all sets $X$, and for all proper classes $Y$, $X$ inject into $Y$




and




For all sets $X$, and for all proper classes $Y$, $Y$ surject onto $X$




To see that those are indeed equivalent to choice we have for one direction to inject a set $X$ into $Ord$ and this will give well ordering for $X$(and because $Ord$ well ordered, we can easily construct an injective from $X$ to $Ord$ using a surjective from $Ord$ to $X$)



To see that the other direction is true, take a set $α$ and a class $Y$, because we are assuming $sf AC$ we may assume WLOG that $α∈Ord$. Then we may use induction to create a sequence $(x_β)$ of ordinals such that for $β<γ$ we have $Y∩V_x_βsubsetneq Y∩V_x_γ$, then we look at $V_x_α$, and by well ordering it find an injective $α→Y$(and surjective $Y→α$).



In the proof use relied heavily on the axiom of foundation, so we can ask are those 3 equivalent in $sf ZF^-$?



When talking with @Wojowu he told me that his intuition told him that $sf AC$ is not equivalent to the other 2, saying that he thinks that there is a model of $sf ZFC^-+mboxa proper class of atoms+mboxonly finite sets of atoms$, in which case no infinite set inject into the class of atoms, but after searching I couldn't find any reference to such model. My questions:



If such model exists, can someone direct me to a reference, or explain it's construction? If not, how those 2 behave in $sf ZF^-$?



What about the other 2? Does the surjective version implies the injective version in $sf ZF^-$?







reference-request set-theory lo.logic axiom-of-choice






share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 5 hours ago









András Bátkai

3,85142342




3,85142342






New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 5 hours ago









HoloHolo

1263




1263




New contributor




Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Holo is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    math.stackexchange.com/questions/1337583/… might be helpful?
    $endgroup$
    – Asaf Karagila
    4 hours ago












  • 1




    $begingroup$
    math.stackexchange.com/questions/1337583/… might be helpful?
    $endgroup$
    – Asaf Karagila
    4 hours ago







1




1




$begingroup$
math.stackexchange.com/questions/1337583/… might be helpful?
$endgroup$
– Asaf Karagila
4 hours ago




$begingroup$
math.stackexchange.com/questions/1337583/… might be helpful?
$endgroup$
– Asaf Karagila
4 hours ago










1 Answer
1






active

oldest

votes


















3












$begingroup$

The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Holo is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f329987%2finjection-into-a-proper-class-and-choice-without-regularity%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



    Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



    And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



    The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



      Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



      And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



      The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



        Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



        And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



        The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)






        share|cite|improve this answer









        $endgroup$



        The results appear in Jech's "The Axiom of Choice" in the problem section of Chapter 9 (Problems 2,3, and 4).



        Indeed, it is easy to see that the injections into classes imply the surjections from classes which imply choice. Exactly by means of the class of ordinals. So the point is to separate the others.



        And if we have a proper class of atoms whose subsets are all finite, then it is a class which does not map onto $omega$, but every set has only finitely many in its transitive closure, so it can be well-ordered.



        The last model is described well in Jech, this is Problem 4 in the aforementioned reference, and the key point is that the atoms are indexed by countable sequences of ordinals, so that there are always surjections onto every set, but there is no $omega$ sequence of atoms, which form a proper class, so there is no injection from any infinite set into the class of atoms. (And indeed, that implies all sets of atoms are finite.)







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 3 hours ago









        Asaf KaragilaAsaf Karagila

        21.8k681187




        21.8k681187




















            Holo is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Holo is a new contributor. Be nice, and check out our Code of Conduct.












            Holo is a new contributor. Be nice, and check out our Code of Conduct.











            Holo is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f329987%2finjection-into-a-proper-class-and-choice-without-regularity%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

            Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

            Tom Holland Mục lục Đầu đời và giáo dục | Sự nghiệp | Cuộc sống cá nhân | Phim tham gia | Giải thưởng và đề cử | Chú thích | Liên kết ngoài | Trình đơn chuyển hướngProfile“Person Details for Thomas Stanley Holland, "England and Wales Birth Registration Index, 1837-2008" — FamilySearch.org”"Meet Tom Holland... the 16-year-old star of The Impossible""Schoolboy actor Tom Holland finds himself in Oscar contention for role in tsunami drama"“Naomi Watts on the Prince William and Harry's reaction to her film about the late Princess Diana”lưu trữ"Holland and Pflueger Are West End's Two New 'Billy Elliots'""I'm so envious of my son, the movie star! British writer Dominic Holland's spent 20 years trying to crack Hollywood - but he's been beaten to it by a very unlikely rival"“Richard and Margaret Povey of Jersey, Channel Islands, UK: Information about Thomas Stanley Holland”"Tom Holland to play Billy Elliot""New Billy Elliot leaving the garage"Billy Elliot the Musical - Tom Holland - Billy"A Tale of four Billys: Tom Holland""The Feel Good Factor""Thames Christian College schoolboys join Myleene Klass for The Feelgood Factor""Government launches £600,000 arts bursaries pilot""BILLY's Chapman, Holland, Gardner & Jackson-Keen Visit Prime Minister""Elton John 'blown away' by Billy Elliot fifth birthday" (video with John's interview and fragments of Holland's performance)"First News interviews Arrietty's Tom Holland"“33rd Critics' Circle Film Awards winners”“National Board of Review Current Awards”Bản gốc"Ron Howard Whaling Tale 'In The Heart Of The Sea' Casts Tom Holland"“'Spider-Man' Finds Tom Holland to Star as New Web-Slinger”lưu trữ“Captain America: Civil War (2016)”“Film Review: ‘Captain America: Civil War’”lưu trữ“‘Captain America: Civil War’ review: Choose your own avenger”lưu trữ“The Lost City of Z reviews”“Sony Pictures and Marvel Studios Find Their 'Spider-Man' Star and Director”“‘Mary Magdalene’, ‘Current War’ & ‘Wind River’ Get 2017 Release Dates From Weinstein”“Lionsgate Unleashing Daisy Ridley & Tom Holland Starrer ‘Chaos Walking’ In Cannes”“PTA's 'Master' Leads Chicago Film Critics Nominations, UPDATED: Houston and Indiana Critics Nominations”“Nominaciones Goya 2013 Telecinco Cinema – ENG”“Jameson Empire Film Awards: Martin Freeman wins best actor for performance in The Hobbit”“34th Annual Young Artist Awards”Bản gốc“Teen Choice Awards 2016—Captain America: Civil War Leads Second Wave of Nominations”“BAFTA Film Award Nominations: ‘La La Land’ Leads Race”“Saturn Awards Nominations 2017: 'Rogue One,' 'Walking Dead' Lead”Tom HollandTom HollandTom HollandTom Hollandmedia.gettyimages.comWorldCat Identities300279794no20130442900000 0004 0355 42791085670554170004732cb16706349t(data)XX5557367