1.
Jutte NH, Grootegoed JA, Rommerts FF, van der Molen HJ (1981) Exogenous lactate is essential for metabolic activities in isolated rat spermatocytes and spermatids. J Reprod Fertil
62: 399–405. [PubMed] [Google Scholar]
2.
Jutte NH, Jansen R, Grootegoed JA, Rommerts FF, Clausen OP, et al. (1982) Regulation of survival of rat pachytene spermatocytes by lactate supply from Sertoli cells. J Reprod Fertil
65: 431–438. [PubMed] [Google Scholar]
3.
Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J
21: 2602–2612. [PubMed] [Google Scholar]
4.
Bassenge E, Sommer O, Schwemmer M, Bünger R (2000) Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol Heart Circ Physiol
279: 2431–2438. [PubMed] [Google Scholar]
5.
Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol
587: 5591–5600. [PMC free article] [PubMed] [Google Scholar]
6.
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol
39: 44–84. [PubMed] [Google Scholar]
7.
Ji AR, Ku SY, Cho MS, Kim YY, Kim YJ, et al. (2010) Reactive oxygen species enhance differentiation of human embryonic stem cells into mesendodermal lineage. Exp Mol Med
42: 175–186. [PMC free article] [PubMed] [Google Scholar]
8.
Loh K, Deng H, Fukushima A, Cai X, Boivin B, et al. (2009) Reactive oxygen species enhance insulin sensitivity. Cell Metab
10: 260–272. [PMC free article] [PubMed] [Google Scholar]
9.
Tai P, Ascoli M (2011) Reactive Oxygen Species (ROS) play a critical role in the cAMP-induced activation of Ras and the phosphorylation of Erk1/2 in Leydig cells. Mol Endocrinol
25: 885–893. [PMC free article] [PubMed] [Google Scholar]
10.
Grootegoed JA, Jansen R, van der Molen HJ (1986) Effect of glucose on ATP dephosphorylation in rat spermatids. J Reprod Fertil
77: 99–107. [PubMed] [Google Scholar]
11.
Mita M, Hall PF (1982) Metabolism of round spermatids from rats: lactate as the preferred substrate. Biol Reprod
26: 445–455. [PubMed] [Google Scholar]
12.
Nakamura M, Okinaga S, Arai K (1984) Metabolism of round spermatids: evidence that lactate is preferred substrate. Am J Physiol
247: 234–242. [PubMed] [Google Scholar]
13.
Schteingart HF, Rivarola MA, Cigorraga SB (1989) Hormonal and paracrine regulation of gamma-glutamyl transpeptidase in rat Sertoli cells. Mol Cell Endocrinol
67: 73–80. [PubMed] [Google Scholar]
14.
Towler MC, Fogarty S, Hawley SA, Pan DA, Martin DM, et al. (2008) A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis. Biochem J
416: 1–14. [PubMed] [Google Scholar]
15.
Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem
86: 271–278. [PubMed] [Google Scholar]
16.
Han KY, Yang D, Chang EJ, Lee Y, Huang H, et al. (2007) Inhibition of osteoclast differentiation and bone resorption by sauchinone. Biochem Pharmacol
74: 911–923. [PubMed] [Google Scholar]
17.
Hu S, Sheng WS, Schachtele JS, Lokensgard JR (2011) Reactive oxygen species drive herpes simplex virus (HSV)-1-induced proinflammatory cytokine production by murine microglia. J Neuroinflammation
8: 123. [PMC free article] [PubMed] [Google Scholar]
18.
Bröer S, Bröer A, Schneider HP, Stegen C, Halestrap AP, et al. (1999) Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J
341: 529–535. [PMC free article] [PubMed] [Google Scholar]
19.
Dimmer KS, Friedrich B, Lang F, Deitmer JW, Bröer S (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J
350: 219–227. [PMC free article] [PubMed] [Google Scholar]
20.
Miles MF, Hung P, Jungmann RA (1981) Cyclic AMP regulation of lactate dehydrogenase. Quantitation of lactate dehydrogenase M-subunit messenger RNA in isoproterenol-and N6,O2′-dibutyryl cyclic AMP-stimulated rat C6 glioma cells by hybridization analysis using a cloned cDNA probe. J Biol Chem
256: 12545–12552. [PubMed] [Google Scholar]
21.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem
193: 265–275. [PubMed] [Google Scholar]
22.
Courtens JL, Plöen L (1999) Improvement of spermatogenesis in adult cryptorchid rat testis by intratesticular infusion of lactate. Biol Reprod
61: 154–161. [PubMed] [Google Scholar]
23.
Wasserman K (1984) The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis
129: 35–40. [PubMed] [Google Scholar]
24.
Bouzier-Sore AK, Merle M, Magistretti PJ, Pellerin L (2002) Feeding active neurons: (re)emergence of a nursing role for astrocytes. J Physiol Paris
96: 273–282. [PubMed] [Google Scholar]
25.
Liu C, Wu J, Zhu J, Kuei C, Yu J, et al. (2009) Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem
284: 2811–2822. [PubMed] [Google Scholar]
26.
Végran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res
71: 2550–2560. [PubMed] [Google Scholar]
27.
Garcia CK, Brown MS, Pathak RK, Goldstein JL (1995) cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem
270: 1843–1849. [PubMed] [Google Scholar]
28.
Pellerin L, Bergersen LH, Halestrap AP, Pierre K (2005) Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res
79: 55–64. [PubMed] [Google Scholar]
29.
Brauchi S, Rauch MC, Alfaro IE, Cea C, Concha II, et al. (2005) Kinetics, molecular basis, and differentiation of L-lactate transport in spermatogenic cells. Am J Physiol Cell Physiol
288: 523–534. [PubMed] [Google Scholar]
30.
Markert CL, Shaklee JB, Whitt GS (1975) Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science
189: 102–114. [PubMed] [Google Scholar]
31.
Battellino LJ, Jaime FR, Blanco A (1968) Kinetic properties of rabbit testicular lactate dehydrogenase isozyme. J Biol Chem
243: 5185–5192. [PubMed] [Google Scholar]
32.
Cummings JH (1984) Colonic absorption: the importance of short chain fatty acids in man. Scand. J Gastroenterol
Suppl 93: 89–99. [PubMed] [Google Scholar]
33.
Cuff MA, Lambert DW, Shirazi-Beechey SP (2002) Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1. J Physiol
539: 361–371. [PMC free article] [PubMed] [Google Scholar]
34.
Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol
279: 1005–1028. [PubMed] [Google Scholar]
35.
Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol
181: 1129–1139. [PMC free article] [PubMed] [Google Scholar]
36.
Cai TQ, Ren N, Jin L, Cheng K, Kash S, et al. (2008) Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem Biophys Res Commun
377: 987–991. [PubMed] [Google Scholar]
37.
Oeckler RA, Arcuino E, Ahmad M, Olson SC, Wolin MS (2005) Cytosolic NADH redox and thiol oxidation regulate pulmonary arterial force through ERK MAP kinase. Am J Physiol Lung Cell Mol Physiol
288: 1017–1025. [PubMed] [Google Scholar]
38.
Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev
87: 245–313. [PubMed] [Google Scholar]
39.
Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol
4: 181–189. [PubMed] [Google Scholar]
40.
Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene
269: 131–140. [PubMed] [Google Scholar]
41.
Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, et al. (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem
279: 46065–46072. [PubMed] [Google Scholar]
42.
Opitz N, Drummond GR, Selemidis S, Meurer S, Schmidt HH (2007) The ‘A’s and ‘O’s of NADPH oxidase regulation: a commentary on “Subcellular localization and function of alternatively spliced Noxo1 isoforms”. Free Radic Biol Med
42: 175–179. [PubMed] [Google Scholar]
43.
Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, et al. (2007) NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J
406: 105–114. [PMC free article] [PubMed] [Google Scholar]
44.
Meroni SB, Schteingart HF, Pellizzari EH, Cigorraga SB (1995) Possible involvement of microfilaments in the regulation of Sertoli cell aromatase activity. Mol Cell Endocrinol
112: 69–75. [PubMed] [Google Scholar]