Cathode rays and the cathode rays tubeHow do we find the angular, radial nodes and the quantum numbers when the radial probability distribution curve's equation is given?Difference between probability and probability density of finding a particle in spacepositive rays ?? (What and why)How does the screening effect work for orbital in the same shell?How are the molar mass and molecular mass of any compound numerically the same?What is the real structure of atom showing every ORBITALStrong or weak force between protons and neutrons?Why did J.J. Thomson observe protons in his cathode ray experiment?Which principle goes against the concept of Bohr's fixed orbits?How is the potential energy between two atoms measured?

How can powerful telekinesis avoid violating Newton's 3rd Law?

That's not my X, its Y is too Z

What are the unintended or dangerous consequences of allowing spells that target and damage creatures to also target and damage objects?

What is the Leave No Trace way to dispose of coffee grounds?

Command of files and size

What do Birth, Age, and Death mean in the first noble truth?

Why isn't Bash trap working if output is redirected to stdout?

NUL delimited variable

Make Gimbap cutter

Does the new finding on "reversing a quantum jump mid-flight" rule out any interpretations of QM?

What do you call the action of "describing events as they happen" like sports anchors do?

If I had a daughter who (is/were/was) cute, I would be very happy

Wizard clothing for warm weather

Is there a DSLR/mirorless camera with minimal options like a classic, simple SLR?

How to avoid typing 'git' at the begining of every Git command

Grep Match and extract

Is Lambda Calculus purely syntactic?

Confused with atmospheric pressure equals plastic balloon’s inner pressure

What differences exist between adamantine and adamantite in all editions of D&D?

Does a (nice) centerless group always have a centerless profinite completion?

Does the Nuka-Cola bottler actually generate nuka cola?

Is it safe to remove python 2.7.15rc1 from Ubuntu 18.04?

Tikz-cd diagram arrow passing under a node - not crossing it

Cathode rays and the cathode rays tube



Cathode rays and the cathode rays tube


How do we find the angular, radial nodes and the quantum numbers when the radial probability distribution curve's equation is given?Difference between probability and probability density of finding a particle in spacepositive rays ?? (What and why)How does the screening effect work for orbital in the same shell?How are the molar mass and molecular mass of any compound numerically the same?What is the real structure of atom showing every ORBITALStrong or weak force between protons and neutrons?Why did J.J. Thomson observe protons in his cathode ray experiment?Which principle goes against the concept of Bohr's fixed orbits?How is the potential energy between two atoms measured?













3












$begingroup$


I got the following extract from a chemistry book (emphasis mine):




It is observed that current does not flow through the gas at ordinary pressure even at high voltage of 5000 volts. When the pressure inside the tube is reduced and a high voltage of 5000–10000 volts is applied, then an electric discharge takes place through the gas producing a uniform glow inside the tube. When the pressure is reduced further to about 0.01 torr, the original glow disappeares. Some rays are produced which create fluorescence on the glass wall opposite to the cathode.




It's about cathode rays discovery in a chapter on atomic structure. Here the author is talking about a uniform glow appearing when the pressure was reduced. Then he says that the rays (which he then refers to as cathode rays) appear after the disappearance of the glow. I have never noticed this glow in any experiment. Does any body know what this is?










share|improve this question









New contributor



M Shehzad is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$











  • $begingroup$
    To close voters, I'm not sure what is unclear about the question. The OP points to a specific phenomena reference in a book (which should ideally have a citation @MShehzad) and it had a relatively straightforward answer.
    $endgroup$
    – Tyberius
    1 hour ago















3












$begingroup$


I got the following extract from a chemistry book (emphasis mine):




It is observed that current does not flow through the gas at ordinary pressure even at high voltage of 5000 volts. When the pressure inside the tube is reduced and a high voltage of 5000–10000 volts is applied, then an electric discharge takes place through the gas producing a uniform glow inside the tube. When the pressure is reduced further to about 0.01 torr, the original glow disappeares. Some rays are produced which create fluorescence on the glass wall opposite to the cathode.




It's about cathode rays discovery in a chapter on atomic structure. Here the author is talking about a uniform glow appearing when the pressure was reduced. Then he says that the rays (which he then refers to as cathode rays) appear after the disappearance of the glow. I have never noticed this glow in any experiment. Does any body know what this is?










share|improve this question









New contributor



M Shehzad is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$











  • $begingroup$
    To close voters, I'm not sure what is unclear about the question. The OP points to a specific phenomena reference in a book (which should ideally have a citation @MShehzad) and it had a relatively straightforward answer.
    $endgroup$
    – Tyberius
    1 hour ago













3












3








3


1



$begingroup$


I got the following extract from a chemistry book (emphasis mine):




It is observed that current does not flow through the gas at ordinary pressure even at high voltage of 5000 volts. When the pressure inside the tube is reduced and a high voltage of 5000–10000 volts is applied, then an electric discharge takes place through the gas producing a uniform glow inside the tube. When the pressure is reduced further to about 0.01 torr, the original glow disappeares. Some rays are produced which create fluorescence on the glass wall opposite to the cathode.




It's about cathode rays discovery in a chapter on atomic structure. Here the author is talking about a uniform glow appearing when the pressure was reduced. Then he says that the rays (which he then refers to as cathode rays) appear after the disappearance of the glow. I have never noticed this glow in any experiment. Does any body know what this is?










share|improve this question









New contributor



M Shehzad is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




I got the following extract from a chemistry book (emphasis mine):




It is observed that current does not flow through the gas at ordinary pressure even at high voltage of 5000 volts. When the pressure inside the tube is reduced and a high voltage of 5000–10000 volts is applied, then an electric discharge takes place through the gas producing a uniform glow inside the tube. When the pressure is reduced further to about 0.01 torr, the original glow disappeares. Some rays are produced which create fluorescence on the glass wall opposite to the cathode.




It's about cathode rays discovery in a chapter on atomic structure. Here the author is talking about a uniform glow appearing when the pressure was reduced. Then he says that the rays (which he then refers to as cathode rays) appear after the disappearance of the glow. I have never noticed this glow in any experiment. Does any body know what this is?







atomic-structure






share|improve this question









New contributor



M Shehzad is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share|improve this question









New contributor



M Shehzad is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|improve this question




share|improve this question








edited 8 hours ago









andselisk

21.2k773142




21.2k773142






New contributor



M Shehzad is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








asked 9 hours ago









M ShehzadM Shehzad

161




161




New contributor



M Shehzad is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




M Shehzad is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.













  • $begingroup$
    To close voters, I'm not sure what is unclear about the question. The OP points to a specific phenomena reference in a book (which should ideally have a citation @MShehzad) and it had a relatively straightforward answer.
    $endgroup$
    – Tyberius
    1 hour ago
















  • $begingroup$
    To close voters, I'm not sure what is unclear about the question. The OP points to a specific phenomena reference in a book (which should ideally have a citation @MShehzad) and it had a relatively straightforward answer.
    $endgroup$
    – Tyberius
    1 hour ago















$begingroup$
To close voters, I'm not sure what is unclear about the question. The OP points to a specific phenomena reference in a book (which should ideally have a citation @MShehzad) and it had a relatively straightforward answer.
$endgroup$
– Tyberius
1 hour ago




$begingroup$
To close voters, I'm not sure what is unclear about the question. The OP points to a specific phenomena reference in a book (which should ideally have a citation @MShehzad) and it had a relatively straightforward answer.
$endgroup$
– Tyberius
1 hour ago










1 Answer
1






active

oldest

votes


















2












$begingroup$

The uniform glow is due to ionization and recombination of the residual gas; it's called a glow discharge. At higher pressure, a spark or arc discharge occurs at much higher current density. Fluorescent lamps and neon lamps operate in the glow-discharge region, and high-pressure xenon lamps use an arc discharge.



Elements of the residual gas can be identified by the color of the glow discharge. Nitrogen and argon in air, for example, glow purplish blue.



As pressure decreases further, density is too low (and path too short) to produce a visible glow discharge, but electrons, AKA "cathode rays", hurled off the electrodes impact the walls of the container, which may glow green in borosilicate glass, and in very low pressure vacuum tubes, such as the 1G3GT high-voltage rectifier, the electrons impacting the anode produce X-rays (high energy photons), which may also create fluorescence in the glass shell.



The difference is easy to see in this video, which demonstrates the change in appearance from an arc discharge to glow discharge, and finally to fluorescence of the glass envelope due to X-rays or electron bombardment. The arc starts at ~20 seconds, the glow discharge at ~26 seconds, striations form ~36 seconds, and by ~46 seconds, the glass envelope glows green from electron bombardment (though it might rathet be the green of residual oxygen). This was one of my favorite demonstrations to show students the basis for spectroscopy!






share|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "431"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    M Shehzad is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f116601%2fcathode-rays-and-the-cathode-rays-tube%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    The uniform glow is due to ionization and recombination of the residual gas; it's called a glow discharge. At higher pressure, a spark or arc discharge occurs at much higher current density. Fluorescent lamps and neon lamps operate in the glow-discharge region, and high-pressure xenon lamps use an arc discharge.



    Elements of the residual gas can be identified by the color of the glow discharge. Nitrogen and argon in air, for example, glow purplish blue.



    As pressure decreases further, density is too low (and path too short) to produce a visible glow discharge, but electrons, AKA "cathode rays", hurled off the electrodes impact the walls of the container, which may glow green in borosilicate glass, and in very low pressure vacuum tubes, such as the 1G3GT high-voltage rectifier, the electrons impacting the anode produce X-rays (high energy photons), which may also create fluorescence in the glass shell.



    The difference is easy to see in this video, which demonstrates the change in appearance from an arc discharge to glow discharge, and finally to fluorescence of the glass envelope due to X-rays or electron bombardment. The arc starts at ~20 seconds, the glow discharge at ~26 seconds, striations form ~36 seconds, and by ~46 seconds, the glass envelope glows green from electron bombardment (though it might rathet be the green of residual oxygen). This was one of my favorite demonstrations to show students the basis for spectroscopy!






    share|improve this answer









    $endgroup$

















      2












      $begingroup$

      The uniform glow is due to ionization and recombination of the residual gas; it's called a glow discharge. At higher pressure, a spark or arc discharge occurs at much higher current density. Fluorescent lamps and neon lamps operate in the glow-discharge region, and high-pressure xenon lamps use an arc discharge.



      Elements of the residual gas can be identified by the color of the glow discharge. Nitrogen and argon in air, for example, glow purplish blue.



      As pressure decreases further, density is too low (and path too short) to produce a visible glow discharge, but electrons, AKA "cathode rays", hurled off the electrodes impact the walls of the container, which may glow green in borosilicate glass, and in very low pressure vacuum tubes, such as the 1G3GT high-voltage rectifier, the electrons impacting the anode produce X-rays (high energy photons), which may also create fluorescence in the glass shell.



      The difference is easy to see in this video, which demonstrates the change in appearance from an arc discharge to glow discharge, and finally to fluorescence of the glass envelope due to X-rays or electron bombardment. The arc starts at ~20 seconds, the glow discharge at ~26 seconds, striations form ~36 seconds, and by ~46 seconds, the glass envelope glows green from electron bombardment (though it might rathet be the green of residual oxygen). This was one of my favorite demonstrations to show students the basis for spectroscopy!






      share|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        The uniform glow is due to ionization and recombination of the residual gas; it's called a glow discharge. At higher pressure, a spark or arc discharge occurs at much higher current density. Fluorescent lamps and neon lamps operate in the glow-discharge region, and high-pressure xenon lamps use an arc discharge.



        Elements of the residual gas can be identified by the color of the glow discharge. Nitrogen and argon in air, for example, glow purplish blue.



        As pressure decreases further, density is too low (and path too short) to produce a visible glow discharge, but electrons, AKA "cathode rays", hurled off the electrodes impact the walls of the container, which may glow green in borosilicate glass, and in very low pressure vacuum tubes, such as the 1G3GT high-voltage rectifier, the electrons impacting the anode produce X-rays (high energy photons), which may also create fluorescence in the glass shell.



        The difference is easy to see in this video, which demonstrates the change in appearance from an arc discharge to glow discharge, and finally to fluorescence of the glass envelope due to X-rays or electron bombardment. The arc starts at ~20 seconds, the glow discharge at ~26 seconds, striations form ~36 seconds, and by ~46 seconds, the glass envelope glows green from electron bombardment (though it might rathet be the green of residual oxygen). This was one of my favorite demonstrations to show students the basis for spectroscopy!






        share|improve this answer









        $endgroup$



        The uniform glow is due to ionization and recombination of the residual gas; it's called a glow discharge. At higher pressure, a spark or arc discharge occurs at much higher current density. Fluorescent lamps and neon lamps operate in the glow-discharge region, and high-pressure xenon lamps use an arc discharge.



        Elements of the residual gas can be identified by the color of the glow discharge. Nitrogen and argon in air, for example, glow purplish blue.



        As pressure decreases further, density is too low (and path too short) to produce a visible glow discharge, but electrons, AKA "cathode rays", hurled off the electrodes impact the walls of the container, which may glow green in borosilicate glass, and in very low pressure vacuum tubes, such as the 1G3GT high-voltage rectifier, the electrons impacting the anode produce X-rays (high energy photons), which may also create fluorescence in the glass shell.



        The difference is easy to see in this video, which demonstrates the change in appearance from an arc discharge to glow discharge, and finally to fluorescence of the glass envelope due to X-rays or electron bombardment. The arc starts at ~20 seconds, the glow discharge at ~26 seconds, striations form ~36 seconds, and by ~46 seconds, the glass envelope glows green from electron bombardment (though it might rathet be the green of residual oxygen). This was one of my favorite demonstrations to show students the basis for spectroscopy!







        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 7 hours ago









        DrMoishe PippikDrMoishe Pippik

        15.3k1633




        15.3k1633




















            M Shehzad is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            M Shehzad is a new contributor. Be nice, and check out our Code of Conduct.












            M Shehzad is a new contributor. Be nice, and check out our Code of Conduct.











            M Shehzad is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Chemistry Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f116601%2fcathode-rays-and-the-cathode-rays-tube%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

            Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

            199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單