Write electromagnetic field tensor in terms of four-vector potentialProof that 4-potential exists from Gauss-Faraday field equationHistory of Electromagnetic Field TensorElectromagnetic field tensor via tensor products?Is electromagnetic vector field a sum of E and B?Can a static electric field have a vector potential field?contravariant components of electromagnetic field tensor under lorentz transformationWhy is the electromagnetic field strength $F_munu=partial_nu A_mu-partial_mu A_nu$ a tensor?Electromagnetic field tensorRapid question about Electromagnetic TensorQuestion about derivation of four-velocity vector4-Gradient vector and the Field strength tensor

Would a "ring language" be possible?

Cycling to work - 30mile return

When did Britain learn about American independence?

Why do galaxies collide?

How to know the path of a particular software?

Would it be fair to use 1d30 (instead of rolling 2d20 and taking the higher die) for advantage rolls?

Is there any deeper thematic meaning to the white horse that Arya finds in The Bells (S08E05)?

Square spiral in Mathematica

What kind of action are dodge and disengage?

Have there been any examples of re-usable rockets in the past?

AD: OU for system administrator accounts

Why is the marginal distribution/marginal probability described as "marginal"?

What would a Dragon have to exhale to cause rain?

Why did the soldiers of the North disobey Jon?

Given 0s on Assignments with suspected and dismissed cheating?

How to handle professionally if colleagues has referred his relative and asking to take easy while taking interview

Failing students when it might cause them economic ruin

How could it be that 80% of townspeople were farmers during the Edo period in Japan?

Physically unpleasant work environment

FIFO data structure in pure C

A person lacking money who shows off a lot

I recently started my machine learning PhD and I have absolutely no idea what I'm doing

Resistor Selection to retain same brightness in LED PWM circuit

Capital gains on stocks sold to take initial investment off the table



Write electromagnetic field tensor in terms of four-vector potential


Proof that 4-potential exists from Gauss-Faraday field equationHistory of Electromagnetic Field TensorElectromagnetic field tensor via tensor products?Is electromagnetic vector field a sum of E and B?Can a static electric field have a vector potential field?contravariant components of electromagnetic field tensor under lorentz transformationWhy is the electromagnetic field strength $F_munu=partial_nu A_mu-partial_mu A_nu$ a tensor?Electromagnetic field tensorRapid question about Electromagnetic TensorQuestion about derivation of four-velocity vector4-Gradient vector and the Field strength tensor













2












$begingroup$


How can we know that the electromagnetic tensor $F^munu$ can be written in terms of a four-vector potential $A^mu$ as $F^mu nu = partial^mu A^nu - partial^nu A^mu$? In the vector calculus approach, this is not really hard to see (under reasonable 'smoothness' conditions on the fields), but I would like to know how one would see this in the four-vector approach.



More specifically, how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$.










share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$











  • $begingroup$
    The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
    $endgroup$
    – user1620696
    3 hours ago










  • $begingroup$
    This was what I was looking for. Thank you, I will look up Poincare's lemma.
    $endgroup$
    – Lucas L.
    3 hours ago















2












$begingroup$


How can we know that the electromagnetic tensor $F^munu$ can be written in terms of a four-vector potential $A^mu$ as $F^mu nu = partial^mu A^nu - partial^nu A^mu$? In the vector calculus approach, this is not really hard to see (under reasonable 'smoothness' conditions on the fields), but I would like to know how one would see this in the four-vector approach.



More specifically, how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$.










share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$











  • $begingroup$
    The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
    $endgroup$
    – user1620696
    3 hours ago










  • $begingroup$
    This was what I was looking for. Thank you, I will look up Poincare's lemma.
    $endgroup$
    – Lucas L.
    3 hours ago













2












2








2





$begingroup$


How can we know that the electromagnetic tensor $F^munu$ can be written in terms of a four-vector potential $A^mu$ as $F^mu nu = partial^mu A^nu - partial^nu A^mu$? In the vector calculus approach, this is not really hard to see (under reasonable 'smoothness' conditions on the fields), but I would like to know how one would see this in the four-vector approach.



More specifically, how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$.










share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




How can we know that the electromagnetic tensor $F^munu$ can be written in terms of a four-vector potential $A^mu$ as $F^mu nu = partial^mu A^nu - partial^nu A^mu$? In the vector calculus approach, this is not really hard to see (under reasonable 'smoothness' conditions on the fields), but I would like to know how one would see this in the four-vector approach.



More specifically, how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$.







electromagnetism tensor-calculus






share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share|cite|improve this question









New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







Lucas L.













New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








asked 4 hours ago









Lucas L.Lucas L.

335




335




New contributor



Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




Lucas L. is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.













  • $begingroup$
    The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
    $endgroup$
    – user1620696
    3 hours ago










  • $begingroup$
    This was what I was looking for. Thank you, I will look up Poincare's lemma.
    $endgroup$
    – Lucas L.
    3 hours ago
















  • $begingroup$
    The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
    $endgroup$
    – user1620696
    3 hours ago










  • $begingroup$
    This was what I was looking for. Thank you, I will look up Poincare's lemma.
    $endgroup$
    – Lucas L.
    3 hours ago















$begingroup$
The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
$endgroup$
– user1620696
3 hours ago




$begingroup$
The EM field is actually a two-form $F$ satisfying Maxwell's equations, one of which is in form notation $dF = 0$. By definition this says that $F$ is a closed form. A form which is $F = dA$ for some $A$ is said exact. Now all exact forms are closed because $d^2 = 0$. On the other hand, Poincare's lemma says that all closed forms are exact if the domain is contractible. Assuming a contractible spacetime implies the existence of the potential from Poincare's lemma
$endgroup$
– user1620696
3 hours ago












$begingroup$
This was what I was looking for. Thank you, I will look up Poincare's lemma.
$endgroup$
– Lucas L.
3 hours ago




$begingroup$
This was what I was looking for. Thank you, I will look up Poincare's lemma.
$endgroup$
– Lucas L.
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    One way to write the homogenous Maxwell's equations is
    with the Levi-Civita symbol $epsilon$:
    $$epsilon^alphabetamunu partial_beta F_munu = 0$$



    Solution to this is obviously (with arbitrary potential $A$):
    $$F_munu = partial_mu A_nu - partial_nu A_mu$$



    It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
    upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.






    share|cite|improve this answer











    $endgroup$




















      0












      $begingroup$

      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.






      share|cite|improve this answer









      $endgroup$












      • $begingroup$
        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
        $endgroup$
        – Lucas L.
        3 hours ago










      • $begingroup$
        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
        $endgroup$
        – ggcg
        3 hours ago










      • $begingroup$
        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
        $endgroup$
        – ggcg
        3 hours ago











      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "151"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f480324%2fwrite-electromagnetic-field-tensor-in-terms-of-four-vector-potential%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.






      share|cite|improve this answer











      $endgroup$

















        2












        $begingroup$

        The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.






        share|cite|improve this answer











        $endgroup$















          2












          2








          2





          $begingroup$

          The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.






          share|cite|improve this answer











          $endgroup$



          The Bianchi identity $mathrmdF~=~0$ together with Poincare lemma guarantee the local existence of $A$ in contractible regions of spacetime. See also this related Phys.SE post.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 3 hours ago

























          answered 3 hours ago









          QmechanicQmechanic

          109k122051270




          109k122051270





















              2












              $begingroup$

              One way to write the homogenous Maxwell's equations is
              with the Levi-Civita symbol $epsilon$:
              $$epsilon^alphabetamunu partial_beta F_munu = 0$$



              Solution to this is obviously (with arbitrary potential $A$):
              $$F_munu = partial_mu A_nu - partial_nu A_mu$$



              It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
              upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.






              share|cite|improve this answer











              $endgroup$

















                2












                $begingroup$

                One way to write the homogenous Maxwell's equations is
                with the Levi-Civita symbol $epsilon$:
                $$epsilon^alphabetamunu partial_beta F_munu = 0$$



                Solution to this is obviously (with arbitrary potential $A$):
                $$F_munu = partial_mu A_nu - partial_nu A_mu$$



                It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
                upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.






                share|cite|improve this answer











                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  One way to write the homogenous Maxwell's equations is
                  with the Levi-Civita symbol $epsilon$:
                  $$epsilon^alphabetamunu partial_beta F_munu = 0$$



                  Solution to this is obviously (with arbitrary potential $A$):
                  $$F_munu = partial_mu A_nu - partial_nu A_mu$$



                  It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
                  upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.






                  share|cite|improve this answer











                  $endgroup$



                  One way to write the homogenous Maxwell's equations is
                  with the Levi-Civita symbol $epsilon$:
                  $$epsilon^alphabetamunu partial_beta F_munu = 0$$



                  Solution to this is obviously (with arbitrary potential $A$):
                  $$F_munu = partial_mu A_nu - partial_nu A_mu$$



                  It is easy to verify using the antisymmetry of $epsilon^alphabetamunu$
                  upon swapping any 2 indexes, together with $partial_mupartial_nu = partial_nupartial_mu$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 2 hours ago

























                  answered 3 hours ago









                  Thomas FritschThomas Fritsch

                  1,8201016




                  1,8201016





















                      0












                      $begingroup$

                      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



                      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



                      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



                      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                        $endgroup$
                        – Lucas L.
                        3 hours ago










                      • $begingroup$
                        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                        $endgroup$
                        – ggcg
                        3 hours ago










                      • $begingroup$
                        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                        $endgroup$
                        – ggcg
                        3 hours ago















                      0












                      $begingroup$

                      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



                      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



                      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



                      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.






                      share|cite|improve this answer









                      $endgroup$












                      • $begingroup$
                        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                        $endgroup$
                        – Lucas L.
                        3 hours ago










                      • $begingroup$
                        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                        $endgroup$
                        – ggcg
                        3 hours ago










                      • $begingroup$
                        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                        $endgroup$
                        – ggcg
                        3 hours ago













                      0












                      0








                      0





                      $begingroup$

                      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



                      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



                      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



                      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.






                      share|cite|improve this answer









                      $endgroup$



                      You are asking "how we know...". This may not be a fair question. We created this formalism. You could also ask how do we know that we can write Maxwell's equations using vectors. Long ago they were not, they were written as a large set of coupled scalar (scalar type) equations. The formalism of vector notation was still evolving and being accepted and one has to PROVE that a set of quantities actually behaves like a vector under coordinate transformations.



                      This is a key to understanding the 4-vector approach. There is a scalar E field potential, Phi, and a vector potential A, in classical electrodynamics.



                      Once Einstein presented Lorentz invariance in physics (I'm not going to write extensively about that history here) we started on the path of putting all equations in a covariant format. It is the nature of light that governs this invariance, and the postulate that the speed of light is the same for all relatively interital observers. Even Newton's laws of mechanics were elevated to a covariant 4-vector form, as was momentum (E, p) where Energy, E, was thought to be a scalar.



                      We know that electromagnetism needs to be Lorentz invariant and this motivates elevating Phi to the time component of a 4-vector, just like E is the time component of 4-momentum. This is also indicated by seeing how the equations transform under Lorentz. The 4-potential (Phi, A) must be as is to obey this symmetry. Then the rest follows.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 3 hours ago









                      ggcgggcg

                      1,626114




                      1,626114











                      • $begingroup$
                        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                        $endgroup$
                        – Lucas L.
                        3 hours ago










                      • $begingroup$
                        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                        $endgroup$
                        – ggcg
                        3 hours ago










                      • $begingroup$
                        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                        $endgroup$
                        – ggcg
                        3 hours ago
















                      • $begingroup$
                        I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                        $endgroup$
                        – Lucas L.
                        3 hours ago










                      • $begingroup$
                        I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                        $endgroup$
                        – ggcg
                        3 hours ago










                      • $begingroup$
                        Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                        $endgroup$
                        – ggcg
                        3 hours ago















                      $begingroup$
                      I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                      $endgroup$
                      – Lucas L.
                      3 hours ago




                      $begingroup$
                      I think you misinterpreted my question. I wanted to ask: how can we prove (mathematically) that given the electromagnetic tensor, there exists a four-vector such that $F^munu = partial^mu A^nu - partial^nu A^mu$. I will edit my question accordingly.
                      $endgroup$
                      – Lucas L.
                      3 hours ago












                      $begingroup$
                      I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                      $endgroup$
                      – ggcg
                      3 hours ago




                      $begingroup$
                      I think I did elude to it. Maxwell's equations will actually convert to the field tensor by collecting terms, using (Phi, A).
                      $endgroup$
                      – ggcg
                      3 hours ago












                      $begingroup$
                      Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                      $endgroup$
                      – ggcg
                      3 hours ago




                      $begingroup$
                      Okay, I am 180 degrees from your intent. Sorry. But it's the same logic as div(B) = 0 and curl(E) = 0. Namely that del(F) = 0 --> F has a potential. Of course you need to get the correct form of the equation, the source free version.
                      $endgroup$
                      – ggcg
                      3 hours ago










                      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.












                      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.











                      Lucas L. is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Physics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f480324%2fwrite-electromagnetic-field-tensor-in-terms-of-four-vector-potential%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                      Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                      199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單