Using PCA vs Linear RegressionMaking sense of principal component analysis, eigenvectors & eigenvaluesAnalysis of compounds using PCA - selecting the right PCA “type” for the data…?Forecasting with use of PCA variables as independent and one ternary dependent variable in REstablishing an empirical relationship among environmental properties using PCA and Multiple RegressionPrincipal component regression (PCR) with some of the original predictors left out of PCAShould I use dummy variables or just assign numerical values to categorical predictors in regression / PCA?PCA too slow when both n,p are large: Alternatives?PCA and visualization using biplots on data with mixed typesHow to weight composites based on PCA with longitudinal data?SVM/Linear Regression after PCA and making up numbersUsing Linear Regression on Principal Components in R studio

If a problem only occurs randomly once in every N times on average, how many tests do I have to perform to be certain that it's now fixed?

Different PCB color ( is it different material? )

Intuition behind eigenvalues of an adjacency matrix

Self-Preservation: How to DM NPCs that Love Living?

How to prevent bad sectors?

What does "Marchentalender" on the front of a postcard mean?

How to make the POV character sit on the sidelines without the reader getting bored

Uncommanded roll at high speed

Can a helicopter mask itself from Radar?

Where can I find the list of all tendons in the human body?

Can't connect to Internet in bash using Mac OS

Do creatures all have the same statistics upon being reanimated via the Animate Dead spell?

Is there a rule that prohibits us from using 2 possessives in a row?

What is the difference between nullifying your vote and not going to vote at all?

What is the intuition behind uniform continuity?

What is the indigenous Russian word for a wild boar?

Possible nonclassical ion from a bicyclic system

Asking bank to reduce APR instead of increasing credit limit

Tic-Tac-Toe for the terminal

Points within polygons in different projections

Looking after a wayward brother in mother's will

How do I subvert the tropes of a train heist?

Term for checking piece whose opponent daren't capture it

Fastest way to perform complex search on pandas dataframe



Using PCA vs Linear Regression


Making sense of principal component analysis, eigenvectors & eigenvaluesAnalysis of compounds using PCA - selecting the right PCA “type” for the data…?Forecasting with use of PCA variables as independent and one ternary dependent variable in REstablishing an empirical relationship among environmental properties using PCA and Multiple RegressionPrincipal component regression (PCR) with some of the original predictors left out of PCAShould I use dummy variables or just assign numerical values to categorical predictors in regression / PCA?PCA too slow when both n,p are large: Alternatives?PCA and visualization using biplots on data with mixed typesHow to weight composites based on PCA with longitudinal data?SVM/Linear Regression after PCA and making up numbersUsing Linear Regression on Principal Components in R studio






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


I'm looking to analyzing data from a study and previous studies that are similar have used either PCA or hierarchical linear regression to analyze the data. I've used both PCA and linear regression previously. From my understanding PCA breaks the data down into principal components and is useful for learning what factors may be strong indicators of our dependent variable, and that linear regression can be used to compare correlation.



How should I be approaching this? If I'm simply wanting to find out what correlates the strongest with my studies dependent variable what would be the best option? Can I use both PCA and then hierarchical linear regression?










share|cite|improve this question









New contributor



4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$


















    2












    $begingroup$


    I'm looking to analyzing data from a study and previous studies that are similar have used either PCA or hierarchical linear regression to analyze the data. I've used both PCA and linear regression previously. From my understanding PCA breaks the data down into principal components and is useful for learning what factors may be strong indicators of our dependent variable, and that linear regression can be used to compare correlation.



    How should I be approaching this? If I'm simply wanting to find out what correlates the strongest with my studies dependent variable what would be the best option? Can I use both PCA and then hierarchical linear regression?










    share|cite|improve this question









    New contributor



    4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$














      2












      2








      2


      0



      $begingroup$


      I'm looking to analyzing data from a study and previous studies that are similar have used either PCA or hierarchical linear regression to analyze the data. I've used both PCA and linear regression previously. From my understanding PCA breaks the data down into principal components and is useful for learning what factors may be strong indicators of our dependent variable, and that linear regression can be used to compare correlation.



      How should I be approaching this? If I'm simply wanting to find out what correlates the strongest with my studies dependent variable what would be the best option? Can I use both PCA and then hierarchical linear regression?










      share|cite|improve this question









      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$




      I'm looking to analyzing data from a study and previous studies that are similar have used either PCA or hierarchical linear regression to analyze the data. I've used both PCA and linear regression previously. From my understanding PCA breaks the data down into principal components and is useful for learning what factors may be strong indicators of our dependent variable, and that linear regression can be used to compare correlation.



      How should I be approaching this? If I'm simply wanting to find out what correlates the strongest with my studies dependent variable what would be the best option? Can I use both PCA and then hierarchical linear regression?







      regression pca






      share|cite|improve this question









      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|cite|improve this question









      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|cite|improve this question




      share|cite|improve this question








      edited 4 hours ago









      Ben

      30.8k235134




      30.8k235134






      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 8 hours ago









      4ntibody4ntibody

      111




      111




      New contributor



      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      4ntibody is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          3 Answers
          3






          active

          oldest

          votes


















          5












          $begingroup$

          PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



          Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



          Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



          If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.






          share|cite|improve this answer









          $endgroup$




















            1












            $begingroup$

            These techniques are not exclusive, and they can be complimentary.



            PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



            Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



            If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



            Best of luck!






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thank you for everybody's quick comments and insight! I now know what i need to do.
              $endgroup$
              – 4ntibody
              7 hours ago



















            0












            $begingroup$

            As other answers have said, PCA and Linear Regression (in general) are different tools.



            PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



            If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.






            share|cite|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "65"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.









              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f410516%2fusing-pca-vs-linear-regression%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5












              $begingroup$

              PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



              Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



              Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



              If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.






              share|cite|improve this answer









              $endgroup$

















                5












                $begingroup$

                PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



                Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



                Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



                If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.






                share|cite|improve this answer









                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



                  Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



                  Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



                  If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.






                  share|cite|improve this answer









                  $endgroup$



                  PCA does not involve a dependent variable: All the variables are treated the same. It is primarily dimension reduction method.



                  Factor analysis also doesn't involve a dependent variable, but its goal is somewhat different: It is to uncover latent factors.



                  Some people use either the components or the factors (or a subset of them) as independent variables in a later regression. This can be useful if you have a lot of IVs: If you want to reduce the number while losing as little variance as possible, that's PCA. If you think these IVs represent some factors, that's FA.



                  If you think there are factors, then it may be best to use FA; but if you are just trying to reduce the number of variables, then there is no guarantee that the components will relate well to the DV. Another method is partial least squares. That does include the DV.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 8 hours ago









                  Peter FlomPeter Flom

                  78.2k12112220




                  78.2k12112220























                      1












                      $begingroup$

                      These techniques are not exclusive, and they can be complimentary.



                      PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



                      Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



                      If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



                      Best of luck!






                      share|cite|improve this answer











                      $endgroup$












                      • $begingroup$
                        Thank you for everybody's quick comments and insight! I now know what i need to do.
                        $endgroup$
                        – 4ntibody
                        7 hours ago
















                      1












                      $begingroup$

                      These techniques are not exclusive, and they can be complimentary.



                      PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



                      Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



                      If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



                      Best of luck!






                      share|cite|improve this answer











                      $endgroup$












                      • $begingroup$
                        Thank you for everybody's quick comments and insight! I now know what i need to do.
                        $endgroup$
                        – 4ntibody
                        7 hours ago














                      1












                      1








                      1





                      $begingroup$

                      These techniques are not exclusive, and they can be complimentary.



                      PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



                      Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



                      If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



                      Best of luck!






                      share|cite|improve this answer











                      $endgroup$



                      These techniques are not exclusive, and they can be complimentary.



                      PCA is a dimension reduction technique. The number of dimensions in your dataset corresponds to the number of observations you have per case. For example, imagine your data is survey data, and you administered a 100 item questionnaire. Each individual who completed the questionnaire is represented by a single point in 100 dimensional space. The goal of PCA is to simplify this space in such a way that the distribution of points is preserved in fewer dimensions. This simplification can help you to describe the data more elegantly, but it can also reveal the dominant trends in your data. A great explanation of PCA can be found here: Making sense of principal component analysis, eigenvectors & eigenvalues



                      Hierarchical linear regression is used to determine whether a predictor (or set of predictors) explains variance in an outcome variable over and above some other predictor (or set of predictors). For example, you may want to know if exercising (IV1) or eating well (IV2) is a better predictor of cardiovascular health (DV). Hierarchical linear regression can help answer this question.



                      If your data is complex (i.e. you have many variables) you can apply PCA to reduce the number of variables/find the "latent variables". These latent variables can then be used in the hierarchical linear regression.



                      Best of luck!







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited 7 hours ago

























                      answered 8 hours ago









                      unicoderunicoder

                      164




                      164











                      • $begingroup$
                        Thank you for everybody's quick comments and insight! I now know what i need to do.
                        $endgroup$
                        – 4ntibody
                        7 hours ago

















                      • $begingroup$
                        Thank you for everybody's quick comments and insight! I now know what i need to do.
                        $endgroup$
                        – 4ntibody
                        7 hours ago
















                      $begingroup$
                      Thank you for everybody's quick comments and insight! I now know what i need to do.
                      $endgroup$
                      – 4ntibody
                      7 hours ago





                      $begingroup$
                      Thank you for everybody's quick comments and insight! I now know what i need to do.
                      $endgroup$
                      – 4ntibody
                      7 hours ago












                      0












                      $begingroup$

                      As other answers have said, PCA and Linear Regression (in general) are different tools.



                      PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



                      If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.






                      share|cite|improve this answer









                      $endgroup$

















                        0












                        $begingroup$

                        As other answers have said, PCA and Linear Regression (in general) are different tools.



                        PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



                        If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.






                        share|cite|improve this answer









                        $endgroup$















                          0












                          0








                          0





                          $begingroup$

                          As other answers have said, PCA and Linear Regression (in general) are different tools.



                          PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



                          If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.






                          share|cite|improve this answer









                          $endgroup$



                          As other answers have said, PCA and Linear Regression (in general) are different tools.



                          PCA is an unsupervised method (only takes in data, no dependent variables) and Linear regression (in general) is a supervised learning method. If you have a dependent variable, a supervised method would be suited to your goals.



                          If you're trying to find out which variables in your data capture most of the variation in the data, PCA is a useful tool.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 5 hours ago









                          AlexanderAlexander

                          1194




                          1194




















                              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.









                              draft saved

                              draft discarded


















                              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.












                              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.











                              4ntibody is a new contributor. Be nice, and check out our Code of Conduct.














                              Thanks for contributing an answer to Cross Validated!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f410516%2fusing-pca-vs-linear-regression%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                              Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                              Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її