Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?With Newton's third law, why are things capable of moving?Clarification regarding Newton's Third Law of Motion and why movement is possibleAccording to Newton's third law, why don't Action and Reaction make equilibrium?Person Pushing a Block vs. People Pushing off Each Other - Newton's Third LawNewton's third law of motion when moving between two surfacesConfused about Newton's 3rd lawHow did tension developed in a string when two equal and opposite forces are applied on the same body?Why does a Ball bounce back if Forces are Equal and Opposite?Why doesn't an object that collides with one that is at rest just do a 180?Newton's $3^rd$ Law of motionWhy does Newton's Third Law work for fields?

Modeling an IP Address

What's that red-plus icon near a text?

Can a vampire attack twice with their claws using Multiattack?

Important Resources for Dark Age Civilizations?

Can you really stack all of this on an Opportunity Attack?

What are the disadvantages of having a left skewed distribution?

Two films in a tank, only one comes out with a development error – why?

"You are your self first supporter", a more proper way to say it

Are the number of citations and number of published articles the most important criteria for a tenure promotion?

meaning of に in 本当に?

Do infinite dimensional systems make sense?

What's the output of a record needle playing an out-of-speed record

Why is 150k or 200k jobs considered good when there's 300k+ births a month?

What defenses are there against being summoned by the Gate spell?

Why do I get two different answers for this counting problem?

Convert two switches to a dual stack, and add outlet - possible here?

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

How much of data wrangling is a data scientist's job?

How do I deal with an unproductive colleague in a small company?

dbcc cleantable batch size explanation

Revoked SSL certificate

Why is consensus so controversial in Britain?

If human space travel is limited by the G force vulnerability, is there a way to counter G forces?

How is it possible to have an ability score that is less than 3?



Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?


With Newton's third law, why are things capable of moving?Clarification regarding Newton's Third Law of Motion and why movement is possibleAccording to Newton's third law, why don't Action and Reaction make equilibrium?Person Pushing a Block vs. People Pushing off Each Other - Newton's Third LawNewton's third law of motion when moving between two surfacesConfused about Newton's 3rd lawHow did tension developed in a string when two equal and opposite forces are applied on the same body?Why does a Ball bounce back if Forces are Equal and Opposite?Why doesn't an object that collides with one that is at rest just do a 180?Newton's $3^rd$ Law of motionWhy does Newton's Third Law work for fields?













8












$begingroup$


Why doesn't a person bounce back after falling down like a ball? If we push a person and he falls down then why doesn't he come back to its initial position. Although according to Newton's 3rd law of motion: To every action there is always equal but opposite reaction. If we take the example of ball then it comes back with the same force as it falls down.But in the case of a human body, this law is not applicable. Why?










share|cite|improve this question









New contributor




nameera jabeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Related: physics.stackexchange.com/q/45653/2451 and links therein.
    $endgroup$
    – Qmechanic
    9 hours ago






  • 2




    $begingroup$
    A ball does not come back with exactly the same force: youtube.com/watch?v=xXXF2C-vrQE
    $endgroup$
    – StrongBad
    5 hours ago







  • 2




    $begingroup$
    The law applies to human bodies. But the law doesn't apply to energy. It applies to force. Force isn't the same thing as energy. It isn't force that's gone missing here. It's energy. Ask where the energy went. We have conservation of energy so it's gotta be here somewhere.
    $endgroup$
    – candied_orange
    5 hours ago
















8












$begingroup$


Why doesn't a person bounce back after falling down like a ball? If we push a person and he falls down then why doesn't he come back to its initial position. Although according to Newton's 3rd law of motion: To every action there is always equal but opposite reaction. If we take the example of ball then it comes back with the same force as it falls down.But in the case of a human body, this law is not applicable. Why?










share|cite|improve this question









New contributor




nameera jabeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Related: physics.stackexchange.com/q/45653/2451 and links therein.
    $endgroup$
    – Qmechanic
    9 hours ago






  • 2




    $begingroup$
    A ball does not come back with exactly the same force: youtube.com/watch?v=xXXF2C-vrQE
    $endgroup$
    – StrongBad
    5 hours ago







  • 2




    $begingroup$
    The law applies to human bodies. But the law doesn't apply to energy. It applies to force. Force isn't the same thing as energy. It isn't force that's gone missing here. It's energy. Ask where the energy went. We have conservation of energy so it's gotta be here somewhere.
    $endgroup$
    – candied_orange
    5 hours ago














8












8








8





$begingroup$


Why doesn't a person bounce back after falling down like a ball? If we push a person and he falls down then why doesn't he come back to its initial position. Although according to Newton's 3rd law of motion: To every action there is always equal but opposite reaction. If we take the example of ball then it comes back with the same force as it falls down.But in the case of a human body, this law is not applicable. Why?










share|cite|improve this question









New contributor




nameera jabeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Why doesn't a person bounce back after falling down like a ball? If we push a person and he falls down then why doesn't he come back to its initial position. Although according to Newton's 3rd law of motion: To every action there is always equal but opposite reaction. If we take the example of ball then it comes back with the same force as it falls down.But in the case of a human body, this law is not applicable. Why?







newtonian-mechanics forces conservation-laws free-body-diagram






share|cite|improve this question









New contributor




nameera jabeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




nameera jabeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 6 hours ago









knzhou

46.3k11124223




46.3k11124223






New contributor




nameera jabeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 10 hours ago









nameera jabeennameera jabeen

492




492




New contributor




nameera jabeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





nameera jabeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






nameera jabeen is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Related: physics.stackexchange.com/q/45653/2451 and links therein.
    $endgroup$
    – Qmechanic
    9 hours ago






  • 2




    $begingroup$
    A ball does not come back with exactly the same force: youtube.com/watch?v=xXXF2C-vrQE
    $endgroup$
    – StrongBad
    5 hours ago







  • 2




    $begingroup$
    The law applies to human bodies. But the law doesn't apply to energy. It applies to force. Force isn't the same thing as energy. It isn't force that's gone missing here. It's energy. Ask where the energy went. We have conservation of energy so it's gotta be here somewhere.
    $endgroup$
    – candied_orange
    5 hours ago

















  • $begingroup$
    Related: physics.stackexchange.com/q/45653/2451 and links therein.
    $endgroup$
    – Qmechanic
    9 hours ago






  • 2




    $begingroup$
    A ball does not come back with exactly the same force: youtube.com/watch?v=xXXF2C-vrQE
    $endgroup$
    – StrongBad
    5 hours ago







  • 2




    $begingroup$
    The law applies to human bodies. But the law doesn't apply to energy. It applies to force. Force isn't the same thing as energy. It isn't force that's gone missing here. It's energy. Ask where the energy went. We have conservation of energy so it's gotta be here somewhere.
    $endgroup$
    – candied_orange
    5 hours ago
















$begingroup$
Related: physics.stackexchange.com/q/45653/2451 and links therein.
$endgroup$
– Qmechanic
9 hours ago




$begingroup$
Related: physics.stackexchange.com/q/45653/2451 and links therein.
$endgroup$
– Qmechanic
9 hours ago




2




2




$begingroup$
A ball does not come back with exactly the same force: youtube.com/watch?v=xXXF2C-vrQE
$endgroup$
– StrongBad
5 hours ago





$begingroup$
A ball does not come back with exactly the same force: youtube.com/watch?v=xXXF2C-vrQE
$endgroup$
– StrongBad
5 hours ago





2




2




$begingroup$
The law applies to human bodies. But the law doesn't apply to energy. It applies to force. Force isn't the same thing as energy. It isn't force that's gone missing here. It's energy. Ask where the energy went. We have conservation of energy so it's gotta be here somewhere.
$endgroup$
– candied_orange
5 hours ago





$begingroup$
The law applies to human bodies. But the law doesn't apply to energy. It applies to force. Force isn't the same thing as energy. It isn't force that's gone missing here. It's energy. Ask where the energy went. We have conservation of energy so it's gotta be here somewhere.
$endgroup$
– candied_orange
5 hours ago











3 Answers
3






active

oldest

votes


















40












$begingroup$

Newton's third law just says when the person is hitting the floor the force the person exerts on the ground is equal to the force the ground exerts on the person. i.e. all forces are interactions.



Newton's third law does not say that all collisions are elastic, which is what you are proposing. When someone hits the floor most of the energy is absorbed by the person through deformation (as well as the floor, depending on what type of floor it is), but there is barely any rebound since people tend to not be very elastic. i.e. the deformation does not involve storing the energy to be released back into kinetic energy. Contrast this with a bouncy ball where much of the energy goes into deforming the ball, but since it is very elastic it is able to spring back and put energy back into motion. However, it is unlikely the collision is still perfectly elastic, as you seem to suggest in your question.



Your misunderstanding likely comes from the imprecise usage of the words "action" and "reaction". In this case, these words refer to just forces, not entire processes. You can get some confusing questions if you don't understand this. For example, why is it that when I open my refrigerator that my refrigerator doesn't also open me?






share|cite|improve this answer











$endgroup$








  • 23




    $begingroup$
    +1 for the last sentence alone!
    $endgroup$
    – knzhou
    10 hours ago






  • 8




    $begingroup$
    Well, I can’t speak for you, but when I open my refrigerator my mouth invariably opens in return—I had always thought it was in anticipation of what is to follow, but perhaps the refrigerator had been returning the gesture after all !
    $endgroup$
    – eggyal
    8 hours ago






  • 7




    $begingroup$
    And, in fact, we cannot make persons more elastic but we can do it with the floor. In general, we call them trampolins. A person falling in a trampoline is very likely to bounce =)
    $endgroup$
    – jean
    6 hours ago










  • $begingroup$
    @DavidRicherby I suppose it depends on the type of floor as well, but that is a good point. I'll make an edit.
    $endgroup$
    – Aaron Stevens
    4 hours ago






  • 1




    $begingroup$
    That's deep. I'm going to tweak it and use it to sound wise. "When you take something out of the refrigerator, the refrigerator takes something out of you."
    $endgroup$
    – Lofty Withers
    2 hours ago


















5












$begingroup$

When you body hits the floor, it does receive an equal and opposite reaction force from the floor. But unlike a ball a body is an complex object. So not all energy is transferred back as kinetic energy. Some energy is used to produce sound, some is used to deform your body... etc. I think you are confusing force with energy. Does every ball bounce back the same amount? Newton's 3rd law talks about force only. More force doesn't always(mostly) equal to more work done.



In your case if all the force was used to change the body's kinetic energy somehow(which is not realistically possible), then it would have bounced back the same amount.






share|cite|improve this answer









$endgroup$




















    0












    $begingroup$


    If we push a person and he falls down then why doesn't he come back to its initial position. Although according to Newton's 3rd law of motion: To every action there is always equal but opposite reaction.




    That's not a correct statement of Newton's third law.



    Newton's third law of motion actually says: "If one object exerts a force on another object, then the second object also exerts a force on the first object, which is of the same magnitude but in the opposite direction."



    So in this case, what Newton's third law is saying is: "If the floor pushes up on a person with a certain amount of force, then the person pushes down on the floor with the same amount of force." From this, there's no reason to think that the person would bounce back to his initial position.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "151"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      nameera jabeen is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470714%2fwhy-doesnt-newtons-third-law-mean-a-person-bounces-back-to-where-they-started%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      40












      $begingroup$

      Newton's third law just says when the person is hitting the floor the force the person exerts on the ground is equal to the force the ground exerts on the person. i.e. all forces are interactions.



      Newton's third law does not say that all collisions are elastic, which is what you are proposing. When someone hits the floor most of the energy is absorbed by the person through deformation (as well as the floor, depending on what type of floor it is), but there is barely any rebound since people tend to not be very elastic. i.e. the deformation does not involve storing the energy to be released back into kinetic energy. Contrast this with a bouncy ball where much of the energy goes into deforming the ball, but since it is very elastic it is able to spring back and put energy back into motion. However, it is unlikely the collision is still perfectly elastic, as you seem to suggest in your question.



      Your misunderstanding likely comes from the imprecise usage of the words "action" and "reaction". In this case, these words refer to just forces, not entire processes. You can get some confusing questions if you don't understand this. For example, why is it that when I open my refrigerator that my refrigerator doesn't also open me?






      share|cite|improve this answer











      $endgroup$








      • 23




        $begingroup$
        +1 for the last sentence alone!
        $endgroup$
        – knzhou
        10 hours ago






      • 8




        $begingroup$
        Well, I can’t speak for you, but when I open my refrigerator my mouth invariably opens in return—I had always thought it was in anticipation of what is to follow, but perhaps the refrigerator had been returning the gesture after all !
        $endgroup$
        – eggyal
        8 hours ago






      • 7




        $begingroup$
        And, in fact, we cannot make persons more elastic but we can do it with the floor. In general, we call them trampolins. A person falling in a trampoline is very likely to bounce =)
        $endgroup$
        – jean
        6 hours ago










      • $begingroup$
        @DavidRicherby I suppose it depends on the type of floor as well, but that is a good point. I'll make an edit.
        $endgroup$
        – Aaron Stevens
        4 hours ago






      • 1




        $begingroup$
        That's deep. I'm going to tweak it and use it to sound wise. "When you take something out of the refrigerator, the refrigerator takes something out of you."
        $endgroup$
        – Lofty Withers
        2 hours ago















      40












      $begingroup$

      Newton's third law just says when the person is hitting the floor the force the person exerts on the ground is equal to the force the ground exerts on the person. i.e. all forces are interactions.



      Newton's third law does not say that all collisions are elastic, which is what you are proposing. When someone hits the floor most of the energy is absorbed by the person through deformation (as well as the floor, depending on what type of floor it is), but there is barely any rebound since people tend to not be very elastic. i.e. the deformation does not involve storing the energy to be released back into kinetic energy. Contrast this with a bouncy ball where much of the energy goes into deforming the ball, but since it is very elastic it is able to spring back and put energy back into motion. However, it is unlikely the collision is still perfectly elastic, as you seem to suggest in your question.



      Your misunderstanding likely comes from the imprecise usage of the words "action" and "reaction". In this case, these words refer to just forces, not entire processes. You can get some confusing questions if you don't understand this. For example, why is it that when I open my refrigerator that my refrigerator doesn't also open me?






      share|cite|improve this answer











      $endgroup$








      • 23




        $begingroup$
        +1 for the last sentence alone!
        $endgroup$
        – knzhou
        10 hours ago






      • 8




        $begingroup$
        Well, I can’t speak for you, but when I open my refrigerator my mouth invariably opens in return—I had always thought it was in anticipation of what is to follow, but perhaps the refrigerator had been returning the gesture after all !
        $endgroup$
        – eggyal
        8 hours ago






      • 7




        $begingroup$
        And, in fact, we cannot make persons more elastic but we can do it with the floor. In general, we call them trampolins. A person falling in a trampoline is very likely to bounce =)
        $endgroup$
        – jean
        6 hours ago










      • $begingroup$
        @DavidRicherby I suppose it depends on the type of floor as well, but that is a good point. I'll make an edit.
        $endgroup$
        – Aaron Stevens
        4 hours ago






      • 1




        $begingroup$
        That's deep. I'm going to tweak it and use it to sound wise. "When you take something out of the refrigerator, the refrigerator takes something out of you."
        $endgroup$
        – Lofty Withers
        2 hours ago













      40












      40








      40





      $begingroup$

      Newton's third law just says when the person is hitting the floor the force the person exerts on the ground is equal to the force the ground exerts on the person. i.e. all forces are interactions.



      Newton's third law does not say that all collisions are elastic, which is what you are proposing. When someone hits the floor most of the energy is absorbed by the person through deformation (as well as the floor, depending on what type of floor it is), but there is barely any rebound since people tend to not be very elastic. i.e. the deformation does not involve storing the energy to be released back into kinetic energy. Contrast this with a bouncy ball where much of the energy goes into deforming the ball, but since it is very elastic it is able to spring back and put energy back into motion. However, it is unlikely the collision is still perfectly elastic, as you seem to suggest in your question.



      Your misunderstanding likely comes from the imprecise usage of the words "action" and "reaction". In this case, these words refer to just forces, not entire processes. You can get some confusing questions if you don't understand this. For example, why is it that when I open my refrigerator that my refrigerator doesn't also open me?






      share|cite|improve this answer











      $endgroup$



      Newton's third law just says when the person is hitting the floor the force the person exerts on the ground is equal to the force the ground exerts on the person. i.e. all forces are interactions.



      Newton's third law does not say that all collisions are elastic, which is what you are proposing. When someone hits the floor most of the energy is absorbed by the person through deformation (as well as the floor, depending on what type of floor it is), but there is barely any rebound since people tend to not be very elastic. i.e. the deformation does not involve storing the energy to be released back into kinetic energy. Contrast this with a bouncy ball where much of the energy goes into deforming the ball, but since it is very elastic it is able to spring back and put energy back into motion. However, it is unlikely the collision is still perfectly elastic, as you seem to suggest in your question.



      Your misunderstanding likely comes from the imprecise usage of the words "action" and "reaction". In this case, these words refer to just forces, not entire processes. You can get some confusing questions if you don't understand this. For example, why is it that when I open my refrigerator that my refrigerator doesn't also open me?







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited 4 hours ago

























      answered 10 hours ago









      Aaron StevensAaron Stevens

      14.4k42453




      14.4k42453







      • 23




        $begingroup$
        +1 for the last sentence alone!
        $endgroup$
        – knzhou
        10 hours ago






      • 8




        $begingroup$
        Well, I can’t speak for you, but when I open my refrigerator my mouth invariably opens in return—I had always thought it was in anticipation of what is to follow, but perhaps the refrigerator had been returning the gesture after all !
        $endgroup$
        – eggyal
        8 hours ago






      • 7




        $begingroup$
        And, in fact, we cannot make persons more elastic but we can do it with the floor. In general, we call them trampolins. A person falling in a trampoline is very likely to bounce =)
        $endgroup$
        – jean
        6 hours ago










      • $begingroup$
        @DavidRicherby I suppose it depends on the type of floor as well, but that is a good point. I'll make an edit.
        $endgroup$
        – Aaron Stevens
        4 hours ago






      • 1




        $begingroup$
        That's deep. I'm going to tweak it and use it to sound wise. "When you take something out of the refrigerator, the refrigerator takes something out of you."
        $endgroup$
        – Lofty Withers
        2 hours ago












      • 23




        $begingroup$
        +1 for the last sentence alone!
        $endgroup$
        – knzhou
        10 hours ago






      • 8




        $begingroup$
        Well, I can’t speak for you, but when I open my refrigerator my mouth invariably opens in return—I had always thought it was in anticipation of what is to follow, but perhaps the refrigerator had been returning the gesture after all !
        $endgroup$
        – eggyal
        8 hours ago






      • 7




        $begingroup$
        And, in fact, we cannot make persons more elastic but we can do it with the floor. In general, we call them trampolins. A person falling in a trampoline is very likely to bounce =)
        $endgroup$
        – jean
        6 hours ago










      • $begingroup$
        @DavidRicherby I suppose it depends on the type of floor as well, but that is a good point. I'll make an edit.
        $endgroup$
        – Aaron Stevens
        4 hours ago






      • 1




        $begingroup$
        That's deep. I'm going to tweak it and use it to sound wise. "When you take something out of the refrigerator, the refrigerator takes something out of you."
        $endgroup$
        – Lofty Withers
        2 hours ago







      23




      23




      $begingroup$
      +1 for the last sentence alone!
      $endgroup$
      – knzhou
      10 hours ago




      $begingroup$
      +1 for the last sentence alone!
      $endgroup$
      – knzhou
      10 hours ago




      8




      8




      $begingroup$
      Well, I can’t speak for you, but when I open my refrigerator my mouth invariably opens in return—I had always thought it was in anticipation of what is to follow, but perhaps the refrigerator had been returning the gesture after all !
      $endgroup$
      – eggyal
      8 hours ago




      $begingroup$
      Well, I can’t speak for you, but when I open my refrigerator my mouth invariably opens in return—I had always thought it was in anticipation of what is to follow, but perhaps the refrigerator had been returning the gesture after all !
      $endgroup$
      – eggyal
      8 hours ago




      7




      7




      $begingroup$
      And, in fact, we cannot make persons more elastic but we can do it with the floor. In general, we call them trampolins. A person falling in a trampoline is very likely to bounce =)
      $endgroup$
      – jean
      6 hours ago




      $begingroup$
      And, in fact, we cannot make persons more elastic but we can do it with the floor. In general, we call them trampolins. A person falling in a trampoline is very likely to bounce =)
      $endgroup$
      – jean
      6 hours ago












      $begingroup$
      @DavidRicherby I suppose it depends on the type of floor as well, but that is a good point. I'll make an edit.
      $endgroup$
      – Aaron Stevens
      4 hours ago




      $begingroup$
      @DavidRicherby I suppose it depends on the type of floor as well, but that is a good point. I'll make an edit.
      $endgroup$
      – Aaron Stevens
      4 hours ago




      1




      1




      $begingroup$
      That's deep. I'm going to tweak it and use it to sound wise. "When you take something out of the refrigerator, the refrigerator takes something out of you."
      $endgroup$
      – Lofty Withers
      2 hours ago




      $begingroup$
      That's deep. I'm going to tweak it and use it to sound wise. "When you take something out of the refrigerator, the refrigerator takes something out of you."
      $endgroup$
      – Lofty Withers
      2 hours ago











      5












      $begingroup$

      When you body hits the floor, it does receive an equal and opposite reaction force from the floor. But unlike a ball a body is an complex object. So not all energy is transferred back as kinetic energy. Some energy is used to produce sound, some is used to deform your body... etc. I think you are confusing force with energy. Does every ball bounce back the same amount? Newton's 3rd law talks about force only. More force doesn't always(mostly) equal to more work done.



      In your case if all the force was used to change the body's kinetic energy somehow(which is not realistically possible), then it would have bounced back the same amount.






      share|cite|improve this answer









      $endgroup$

















        5












        $begingroup$

        When you body hits the floor, it does receive an equal and opposite reaction force from the floor. But unlike a ball a body is an complex object. So not all energy is transferred back as kinetic energy. Some energy is used to produce sound, some is used to deform your body... etc. I think you are confusing force with energy. Does every ball bounce back the same amount? Newton's 3rd law talks about force only. More force doesn't always(mostly) equal to more work done.



        In your case if all the force was used to change the body's kinetic energy somehow(which is not realistically possible), then it would have bounced back the same amount.






        share|cite|improve this answer









        $endgroup$















          5












          5








          5





          $begingroup$

          When you body hits the floor, it does receive an equal and opposite reaction force from the floor. But unlike a ball a body is an complex object. So not all energy is transferred back as kinetic energy. Some energy is used to produce sound, some is used to deform your body... etc. I think you are confusing force with energy. Does every ball bounce back the same amount? Newton's 3rd law talks about force only. More force doesn't always(mostly) equal to more work done.



          In your case if all the force was used to change the body's kinetic energy somehow(which is not realistically possible), then it would have bounced back the same amount.






          share|cite|improve this answer









          $endgroup$



          When you body hits the floor, it does receive an equal and opposite reaction force from the floor. But unlike a ball a body is an complex object. So not all energy is transferred back as kinetic energy. Some energy is used to produce sound, some is used to deform your body... etc. I think you are confusing force with energy. Does every ball bounce back the same amount? Newton's 3rd law talks about force only. More force doesn't always(mostly) equal to more work done.



          In your case if all the force was used to change the body's kinetic energy somehow(which is not realistically possible), then it would have bounced back the same amount.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 10 hours ago









          LikhonLikhon

          969




          969





















              0












              $begingroup$


              If we push a person and he falls down then why doesn't he come back to its initial position. Although according to Newton's 3rd law of motion: To every action there is always equal but opposite reaction.




              That's not a correct statement of Newton's third law.



              Newton's third law of motion actually says: "If one object exerts a force on another object, then the second object also exerts a force on the first object, which is of the same magnitude but in the opposite direction."



              So in this case, what Newton's third law is saying is: "If the floor pushes up on a person with a certain amount of force, then the person pushes down on the floor with the same amount of force." From this, there's no reason to think that the person would bounce back to his initial position.






              share|cite|improve this answer









              $endgroup$

















                0












                $begingroup$


                If we push a person and he falls down then why doesn't he come back to its initial position. Although according to Newton's 3rd law of motion: To every action there is always equal but opposite reaction.




                That's not a correct statement of Newton's third law.



                Newton's third law of motion actually says: "If one object exerts a force on another object, then the second object also exerts a force on the first object, which is of the same magnitude but in the opposite direction."



                So in this case, what Newton's third law is saying is: "If the floor pushes up on a person with a certain amount of force, then the person pushes down on the floor with the same amount of force." From this, there's no reason to think that the person would bounce back to his initial position.






                share|cite|improve this answer









                $endgroup$















                  0












                  0








                  0





                  $begingroup$


                  If we push a person and he falls down then why doesn't he come back to its initial position. Although according to Newton's 3rd law of motion: To every action there is always equal but opposite reaction.




                  That's not a correct statement of Newton's third law.



                  Newton's third law of motion actually says: "If one object exerts a force on another object, then the second object also exerts a force on the first object, which is of the same magnitude but in the opposite direction."



                  So in this case, what Newton's third law is saying is: "If the floor pushes up on a person with a certain amount of force, then the person pushes down on the floor with the same amount of force." From this, there's no reason to think that the person would bounce back to his initial position.






                  share|cite|improve this answer









                  $endgroup$




                  If we push a person and he falls down then why doesn't he come back to its initial position. Although according to Newton's 3rd law of motion: To every action there is always equal but opposite reaction.




                  That's not a correct statement of Newton's third law.



                  Newton's third law of motion actually says: "If one object exerts a force on another object, then the second object also exerts a force on the first object, which is of the same magnitude but in the opposite direction."



                  So in this case, what Newton's third law is saying is: "If the floor pushes up on a person with a certain amount of force, then the person pushes down on the floor with the same amount of force." From this, there's no reason to think that the person would bounce back to his initial position.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  Tanner SwettTanner Swett

                  1518




                  1518




















                      nameera jabeen is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      nameera jabeen is a new contributor. Be nice, and check out our Code of Conduct.












                      nameera jabeen is a new contributor. Be nice, and check out our Code of Conduct.











                      nameera jabeen is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Physics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470714%2fwhy-doesnt-newtons-third-law-mean-a-person-bounces-back-to-where-they-started%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                      Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                      Tom Holland Mục lục Đầu đời và giáo dục | Sự nghiệp | Cuộc sống cá nhân | Phim tham gia | Giải thưởng và đề cử | Chú thích | Liên kết ngoài | Trình đơn chuyển hướngProfile“Person Details for Thomas Stanley Holland, "England and Wales Birth Registration Index, 1837-2008" — FamilySearch.org”"Meet Tom Holland... the 16-year-old star of The Impossible""Schoolboy actor Tom Holland finds himself in Oscar contention for role in tsunami drama"“Naomi Watts on the Prince William and Harry's reaction to her film about the late Princess Diana”lưu trữ"Holland and Pflueger Are West End's Two New 'Billy Elliots'""I'm so envious of my son, the movie star! British writer Dominic Holland's spent 20 years trying to crack Hollywood - but he's been beaten to it by a very unlikely rival"“Richard and Margaret Povey of Jersey, Channel Islands, UK: Information about Thomas Stanley Holland”"Tom Holland to play Billy Elliot""New Billy Elliot leaving the garage"Billy Elliot the Musical - Tom Holland - Billy"A Tale of four Billys: Tom Holland""The Feel Good Factor""Thames Christian College schoolboys join Myleene Klass for The Feelgood Factor""Government launches £600,000 arts bursaries pilot""BILLY's Chapman, Holland, Gardner & Jackson-Keen Visit Prime Minister""Elton John 'blown away' by Billy Elliot fifth birthday" (video with John's interview and fragments of Holland's performance)"First News interviews Arrietty's Tom Holland"“33rd Critics' Circle Film Awards winners”“National Board of Review Current Awards”Bản gốc"Ron Howard Whaling Tale 'In The Heart Of The Sea' Casts Tom Holland"“'Spider-Man' Finds Tom Holland to Star as New Web-Slinger”lưu trữ“Captain America: Civil War (2016)”“Film Review: ‘Captain America: Civil War’”lưu trữ“‘Captain America: Civil War’ review: Choose your own avenger”lưu trữ“The Lost City of Z reviews”“Sony Pictures and Marvel Studios Find Their 'Spider-Man' Star and Director”“‘Mary Magdalene’, ‘Current War’ & ‘Wind River’ Get 2017 Release Dates From Weinstein”“Lionsgate Unleashing Daisy Ridley & Tom Holland Starrer ‘Chaos Walking’ In Cannes”“PTA's 'Master' Leads Chicago Film Critics Nominations, UPDATED: Houston and Indiana Critics Nominations”“Nominaciones Goya 2013 Telecinco Cinema – ENG”“Jameson Empire Film Awards: Martin Freeman wins best actor for performance in The Hobbit”“34th Annual Young Artist Awards”Bản gốc“Teen Choice Awards 2016—Captain America: Civil War Leads Second Wave of Nominations”“BAFTA Film Award Nominations: ‘La La Land’ Leads Race”“Saturn Awards Nominations 2017: 'Rogue One,' 'Walking Dead' Lead”Tom HollandTom HollandTom HollandTom Hollandmedia.gettyimages.comWorldCat Identities300279794no20130442900000 0004 0355 42791085670554170004732cb16706349t(data)XX5557367