Why does an inductor oppose the change in current (magnetic field)?How does an inductor store magnetic energy?Rate of change of current in an InductorWhy do Capacitor Inductor circuits Oscillate instead of reaching equilibrium?Magnetic field effect on inductorsAt $t=0$ the voltage across the Inductor will immediately jump to battery voltage. Why?If an inductor has current flowing in only one direction, does the magnetic field still vary directions?Energy stored in the magnetic fieldMagnetic field around an Inductor?Confusion in understanding the behavior of inductor in RL circuit with DC sourceHow is the rate of current change in an inductor present in a circuit maintained / decreased?

Can you remove a blindfold using the Telekinesis spell?

Word for giving preference to the oldest child

How can you tell the version of Ubuntu on a system in a .sh (bash) script?

What kind of horizontal stabilizer does a Boeing 737 have?

My employer is refusing to give me the pay that was advertised after an internal job move

How to find bus maps for Paris outside the périphérique?

What parameters are to be considered when choosing a MOSFET?

Why are prop blades not shaped like household fan blades?

Why does Latex make a small adjustment when I change section color

Coworker mumbles to herself when working, how to ask her to stop?

How to innovate in OR

May a hotel provide accommodation for fewer people than booked?

What is my clock telling me to do?

What to expect in a jazz audition

Can living where Rare Earth magnetic ore is abundant provide any protection?

Password management for kids - what's a good way to start?

Create two random teams from a list of players

How to remove rebar passing through an inaccessible pipe

How to efficiently shred a lot of cabbage?

What are the cons of stateless password generators?

Prepare a user to perform an action before proceeding to the next step

Numerically Stable IIR filter

If I buy and download a game through second Nintendo account do I own it on my main account too?

Value of a limit.



Why does an inductor oppose the change in current (magnetic field)?


How does an inductor store magnetic energy?Rate of change of current in an InductorWhy do Capacitor Inductor circuits Oscillate instead of reaching equilibrium?Magnetic field effect on inductorsAt $t=0$ the voltage across the Inductor will immediately jump to battery voltage. Why?If an inductor has current flowing in only one direction, does the magnetic field still vary directions?Energy stored in the magnetic fieldMagnetic field around an Inductor?Confusion in understanding the behavior of inductor in RL circuit with DC sourceHow is the rate of current change in an inductor present in a circuit maintained / decreased?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


May I get a physical interpretation on this question? What is happening in the inductor when the current is running through it and what is physically happening when the current starts changing?










share|cite|improve this question







New contributor



Yiyang Zhi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




















    2












    $begingroup$


    May I get a physical interpretation on this question? What is happening in the inductor when the current is running through it and what is physically happening when the current starts changing?










    share|cite|improve this question







    New contributor



    Yiyang Zhi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$
















      2












      2








      2





      $begingroup$


      May I get a physical interpretation on this question? What is happening in the inductor when the current is running through it and what is physically happening when the current starts changing?










      share|cite|improve this question







      New contributor



      Yiyang Zhi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$




      May I get a physical interpretation on this question? What is happening in the inductor when the current is running through it and what is physically happening when the current starts changing?







      electromagnetism






      share|cite|improve this question







      New contributor



      Yiyang Zhi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|cite|improve this question







      New contributor



      Yiyang Zhi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|cite|improve this question




      share|cite|improve this question






      New contributor



      Yiyang Zhi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 8 hours ago









      Yiyang ZhiYiyang Zhi

      303 bronze badges




      303 bronze badges




      New contributor



      Yiyang Zhi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      Yiyang Zhi is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.

























          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$


          What is happening in the inductor when the current is running through
          it and what is physically happening when the current starts changing?




          In order to explain what is physically happening it might be helpful to consider the mechanical analogue of kinetic energy and the inertia of mass. The analogy is not exact, but it may hopefully give you a physical "feel" for what's going on, that is not so easy to feel with electrical concepts.



          As @niels nielson pointed out an inductor with a constant current produces a magnetic field. That magnetic field represents stored energy in the inductor, in this case, in the form of kinetic energy. (A capacitor has stored energy in the electric field between the plates and, in that case, the stored energy is electrical potential energy).



          Now think of a mass moving at constant velocity and having kinetic energy. It will resist any attempt to slow it down (reduce its kinetic energy) or speed it up (increase its kinetic energy) analogous to an inductor resisting any attempt to change its current (and thereby changing the kinetic energy of its magnetic field). The mass has inertia. The inertia (to current change) of an inductor is analogous to the inertia (to velocity change) of the mass. The analogy can be seen when one compares faradays law of induction.



          $$V_L(t)=LfracdI(t)dt$$



          With Newtons's second law of motion



          $$F=Mfracdv(t)dt$$



          Very roughly speaking, we can consider:



          1. Voltage as the analogue of force

          2. Inductance as the analogue of mass

          3. Velocity as the analogue of current.

          The diagram below shows other mechanical analogues for resistance and capacitance.



          I would like to stress that inductance is not mass, velocity is not current, and voltage is not force. The analogy is simply intended to help you get some feel as to what is going on.



          Hope it helps



          enter image description here






          share|cite|improve this answer











          $endgroup$






















            2












            $begingroup$

            Here is one way of looking at this.



            We start with an inductor that has a steady current flowing through it from a power source. Because of this, there is a magnetic field extending into space surrounding the inductor.



            Now we attempt to cut off the flow of current through the inductor, by switching off the source. At the instant the current goes off, the magnetic field begins to collapse around the inductor, which induces a current flow in the inductor in the same direction as our original current. The quicker the field collapses, the greater the induced current flow- and we observe a big fat spark jumping across the switch terminals as they move apart.



            We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert.






            share|cite|improve this answer









            $endgroup$














            • $begingroup$
              We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert. But doesn't the OP want to know why this itself happens, not how we know it does happen?
              $endgroup$
              – Aaron Stevens
              4 hours ago











            • $begingroup$
              I left out the d(i)/dt terminology because I did not think he was at that level. What I was shooting for was the idea that the field collapse drives the current and tries to maintain its flow. My usual way of explaining this is to move into the mechanical analogue and represent inductance as a mass but I thought that might not be suitable.
              $endgroup$
              – niels nielsen
              3 hours ago


















            0












            $begingroup$

            In classical electromagnetic theory, the effect works like this. The laws of physics dictate that whenever you have an electric current (i.e. charge in motion), there must be an associated magnetic field with it.



            Now, those same laws also say that electromagnetic fields, of which purely magnetic fields are a special case, contain energy. By conservation of energy, that energy has to come from somewhere, if it wasn't there before, and it has to go somewhere as well, if it is there now but won't be later.



            So now consider what happens when you initiate an electric current. By the first principle, there must be a magnetic field. By the second, this field represents energy, and that energy has to be sourced. Since you cannot have a current without this magnetic field, then that means it has to take energy to cause the current, and thus the power source you are using has to do work.



            Likewise, when the power source is withdrawn, the magnetic field begins to falter, and its energy has to go somewhere. That energy goes now into keeping the current flowing for longer.



            Moreover, you should be able to see then that any and all circuit elements have inductance, not just "inductors", and it is impossible to avoid, because to do so you would need to have a current without establishing any magnetic field. "Inductors" are simply components specially designed to exaggerate the effect.






            share|cite|improve this answer









            $endgroup$

















              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "151"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              Yiyang Zhi is a new contributor. Be nice, and check out our Code of Conduct.









              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f494710%2fwhy-does-an-inductor-oppose-the-change-in-current-magnetic-field%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$


              What is happening in the inductor when the current is running through
              it and what is physically happening when the current starts changing?




              In order to explain what is physically happening it might be helpful to consider the mechanical analogue of kinetic energy and the inertia of mass. The analogy is not exact, but it may hopefully give you a physical "feel" for what's going on, that is not so easy to feel with electrical concepts.



              As @niels nielson pointed out an inductor with a constant current produces a magnetic field. That magnetic field represents stored energy in the inductor, in this case, in the form of kinetic energy. (A capacitor has stored energy in the electric field between the plates and, in that case, the stored energy is electrical potential energy).



              Now think of a mass moving at constant velocity and having kinetic energy. It will resist any attempt to slow it down (reduce its kinetic energy) or speed it up (increase its kinetic energy) analogous to an inductor resisting any attempt to change its current (and thereby changing the kinetic energy of its magnetic field). The mass has inertia. The inertia (to current change) of an inductor is analogous to the inertia (to velocity change) of the mass. The analogy can be seen when one compares faradays law of induction.



              $$V_L(t)=LfracdI(t)dt$$



              With Newtons's second law of motion



              $$F=Mfracdv(t)dt$$



              Very roughly speaking, we can consider:



              1. Voltage as the analogue of force

              2. Inductance as the analogue of mass

              3. Velocity as the analogue of current.

              The diagram below shows other mechanical analogues for resistance and capacitance.



              I would like to stress that inductance is not mass, velocity is not current, and voltage is not force. The analogy is simply intended to help you get some feel as to what is going on.



              Hope it helps



              enter image description here






              share|cite|improve this answer











              $endgroup$



















                3












                $begingroup$


                What is happening in the inductor when the current is running through
                it and what is physically happening when the current starts changing?




                In order to explain what is physically happening it might be helpful to consider the mechanical analogue of kinetic energy and the inertia of mass. The analogy is not exact, but it may hopefully give you a physical "feel" for what's going on, that is not so easy to feel with electrical concepts.



                As @niels nielson pointed out an inductor with a constant current produces a magnetic field. That magnetic field represents stored energy in the inductor, in this case, in the form of kinetic energy. (A capacitor has stored energy in the electric field between the plates and, in that case, the stored energy is electrical potential energy).



                Now think of a mass moving at constant velocity and having kinetic energy. It will resist any attempt to slow it down (reduce its kinetic energy) or speed it up (increase its kinetic energy) analogous to an inductor resisting any attempt to change its current (and thereby changing the kinetic energy of its magnetic field). The mass has inertia. The inertia (to current change) of an inductor is analogous to the inertia (to velocity change) of the mass. The analogy can be seen when one compares faradays law of induction.



                $$V_L(t)=LfracdI(t)dt$$



                With Newtons's second law of motion



                $$F=Mfracdv(t)dt$$



                Very roughly speaking, we can consider:



                1. Voltage as the analogue of force

                2. Inductance as the analogue of mass

                3. Velocity as the analogue of current.

                The diagram below shows other mechanical analogues for resistance and capacitance.



                I would like to stress that inductance is not mass, velocity is not current, and voltage is not force. The analogy is simply intended to help you get some feel as to what is going on.



                Hope it helps



                enter image description here






                share|cite|improve this answer











                $endgroup$

















                  3












                  3








                  3





                  $begingroup$


                  What is happening in the inductor when the current is running through
                  it and what is physically happening when the current starts changing?




                  In order to explain what is physically happening it might be helpful to consider the mechanical analogue of kinetic energy and the inertia of mass. The analogy is not exact, but it may hopefully give you a physical "feel" for what's going on, that is not so easy to feel with electrical concepts.



                  As @niels nielson pointed out an inductor with a constant current produces a magnetic field. That magnetic field represents stored energy in the inductor, in this case, in the form of kinetic energy. (A capacitor has stored energy in the electric field between the plates and, in that case, the stored energy is electrical potential energy).



                  Now think of a mass moving at constant velocity and having kinetic energy. It will resist any attempt to slow it down (reduce its kinetic energy) or speed it up (increase its kinetic energy) analogous to an inductor resisting any attempt to change its current (and thereby changing the kinetic energy of its magnetic field). The mass has inertia. The inertia (to current change) of an inductor is analogous to the inertia (to velocity change) of the mass. The analogy can be seen when one compares faradays law of induction.



                  $$V_L(t)=LfracdI(t)dt$$



                  With Newtons's second law of motion



                  $$F=Mfracdv(t)dt$$



                  Very roughly speaking, we can consider:



                  1. Voltage as the analogue of force

                  2. Inductance as the analogue of mass

                  3. Velocity as the analogue of current.

                  The diagram below shows other mechanical analogues for resistance and capacitance.



                  I would like to stress that inductance is not mass, velocity is not current, and voltage is not force. The analogy is simply intended to help you get some feel as to what is going on.



                  Hope it helps



                  enter image description here






                  share|cite|improve this answer











                  $endgroup$




                  What is happening in the inductor when the current is running through
                  it and what is physically happening when the current starts changing?




                  In order to explain what is physically happening it might be helpful to consider the mechanical analogue of kinetic energy and the inertia of mass. The analogy is not exact, but it may hopefully give you a physical "feel" for what's going on, that is not so easy to feel with electrical concepts.



                  As @niels nielson pointed out an inductor with a constant current produces a magnetic field. That magnetic field represents stored energy in the inductor, in this case, in the form of kinetic energy. (A capacitor has stored energy in the electric field between the plates and, in that case, the stored energy is electrical potential energy).



                  Now think of a mass moving at constant velocity and having kinetic energy. It will resist any attempt to slow it down (reduce its kinetic energy) or speed it up (increase its kinetic energy) analogous to an inductor resisting any attempt to change its current (and thereby changing the kinetic energy of its magnetic field). The mass has inertia. The inertia (to current change) of an inductor is analogous to the inertia (to velocity change) of the mass. The analogy can be seen when one compares faradays law of induction.



                  $$V_L(t)=LfracdI(t)dt$$



                  With Newtons's second law of motion



                  $$F=Mfracdv(t)dt$$



                  Very roughly speaking, we can consider:



                  1. Voltage as the analogue of force

                  2. Inductance as the analogue of mass

                  3. Velocity as the analogue of current.

                  The diagram below shows other mechanical analogues for resistance and capacitance.



                  I would like to stress that inductance is not mass, velocity is not current, and voltage is not force. The analogy is simply intended to help you get some feel as to what is going on.



                  Hope it helps



                  enter image description here







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 16 mins ago

























                  answered 3 hours ago









                  Bob DBob D

                  11.2k3 gold badges10 silver badges35 bronze badges




                  11.2k3 gold badges10 silver badges35 bronze badges


























                      2












                      $begingroup$

                      Here is one way of looking at this.



                      We start with an inductor that has a steady current flowing through it from a power source. Because of this, there is a magnetic field extending into space surrounding the inductor.



                      Now we attempt to cut off the flow of current through the inductor, by switching off the source. At the instant the current goes off, the magnetic field begins to collapse around the inductor, which induces a current flow in the inductor in the same direction as our original current. The quicker the field collapses, the greater the induced current flow- and we observe a big fat spark jumping across the switch terminals as they move apart.



                      We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert.






                      share|cite|improve this answer









                      $endgroup$














                      • $begingroup$
                        We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert. But doesn't the OP want to know why this itself happens, not how we know it does happen?
                        $endgroup$
                        – Aaron Stevens
                        4 hours ago











                      • $begingroup$
                        I left out the d(i)/dt terminology because I did not think he was at that level. What I was shooting for was the idea that the field collapse drives the current and tries to maintain its flow. My usual way of explaining this is to move into the mechanical analogue and represent inductance as a mass but I thought that might not be suitable.
                        $endgroup$
                        – niels nielsen
                        3 hours ago















                      2












                      $begingroup$

                      Here is one way of looking at this.



                      We start with an inductor that has a steady current flowing through it from a power source. Because of this, there is a magnetic field extending into space surrounding the inductor.



                      Now we attempt to cut off the flow of current through the inductor, by switching off the source. At the instant the current goes off, the magnetic field begins to collapse around the inductor, which induces a current flow in the inductor in the same direction as our original current. The quicker the field collapses, the greater the induced current flow- and we observe a big fat spark jumping across the switch terminals as they move apart.



                      We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert.






                      share|cite|improve this answer









                      $endgroup$














                      • $begingroup$
                        We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert. But doesn't the OP want to know why this itself happens, not how we know it does happen?
                        $endgroup$
                        – Aaron Stevens
                        4 hours ago











                      • $begingroup$
                        I left out the d(i)/dt terminology because I did not think he was at that level. What I was shooting for was the idea that the field collapse drives the current and tries to maintain its flow. My usual way of explaining this is to move into the mechanical analogue and represent inductance as a mass but I thought that might not be suitable.
                        $endgroup$
                        – niels nielsen
                        3 hours ago













                      2












                      2








                      2





                      $begingroup$

                      Here is one way of looking at this.



                      We start with an inductor that has a steady current flowing through it from a power source. Because of this, there is a magnetic field extending into space surrounding the inductor.



                      Now we attempt to cut off the flow of current through the inductor, by switching off the source. At the instant the current goes off, the magnetic field begins to collapse around the inductor, which induces a current flow in the inductor in the same direction as our original current. The quicker the field collapses, the greater the induced current flow- and we observe a big fat spark jumping across the switch terminals as they move apart.



                      We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert.






                      share|cite|improve this answer









                      $endgroup$



                      Here is one way of looking at this.



                      We start with an inductor that has a steady current flowing through it from a power source. Because of this, there is a magnetic field extending into space surrounding the inductor.



                      Now we attempt to cut off the flow of current through the inductor, by switching off the source. At the instant the current goes off, the magnetic field begins to collapse around the inductor, which induces a current flow in the inductor in the same direction as our original current. The quicker the field collapses, the greater the induced current flow- and we observe a big fat spark jumping across the switch terminals as they move apart.



                      We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 5 hours ago









                      niels nielsenniels nielsen

                      24.5k5 gold badges33 silver badges69 bronze badges




                      24.5k5 gold badges33 silver badges69 bronze badges














                      • $begingroup$
                        We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert. But doesn't the OP want to know why this itself happens, not how we know it does happen?
                        $endgroup$
                        – Aaron Stevens
                        4 hours ago











                      • $begingroup$
                        I left out the d(i)/dt terminology because I did not think he was at that level. What I was shooting for was the idea that the field collapse drives the current and tries to maintain its flow. My usual way of explaining this is to move into the mechanical analogue and represent inductance as a mass but I thought that might not be suitable.
                        $endgroup$
                        – niels nielsen
                        3 hours ago
















                      • $begingroup$
                        We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert. But doesn't the OP want to know why this itself happens, not how we know it does happen?
                        $endgroup$
                        – Aaron Stevens
                        4 hours ago











                      • $begingroup$
                        I left out the d(i)/dt terminology because I did not think he was at that level. What I was shooting for was the idea that the field collapse drives the current and tries to maintain its flow. My usual way of explaining this is to move into the mechanical analogue and represent inductance as a mass but I thought that might not be suitable.
                        $endgroup$
                        – niels nielsen
                        3 hours ago















                      $begingroup$
                      We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert. But doesn't the OP want to know why this itself happens, not how we know it does happen?
                      $endgroup$
                      – Aaron Stevens
                      4 hours ago





                      $begingroup$
                      We conclude that the current flow in the inductor really wants to keep flowing, and the inductor "fights" any change in the magnitude of the current flow we try to assert. But doesn't the OP want to know why this itself happens, not how we know it does happen?
                      $endgroup$
                      – Aaron Stevens
                      4 hours ago













                      $begingroup$
                      I left out the d(i)/dt terminology because I did not think he was at that level. What I was shooting for was the idea that the field collapse drives the current and tries to maintain its flow. My usual way of explaining this is to move into the mechanical analogue and represent inductance as a mass but I thought that might not be suitable.
                      $endgroup$
                      – niels nielsen
                      3 hours ago




                      $begingroup$
                      I left out the d(i)/dt terminology because I did not think he was at that level. What I was shooting for was the idea that the field collapse drives the current and tries to maintain its flow. My usual way of explaining this is to move into the mechanical analogue and represent inductance as a mass but I thought that might not be suitable.
                      $endgroup$
                      – niels nielsen
                      3 hours ago











                      0












                      $begingroup$

                      In classical electromagnetic theory, the effect works like this. The laws of physics dictate that whenever you have an electric current (i.e. charge in motion), there must be an associated magnetic field with it.



                      Now, those same laws also say that electromagnetic fields, of which purely magnetic fields are a special case, contain energy. By conservation of energy, that energy has to come from somewhere, if it wasn't there before, and it has to go somewhere as well, if it is there now but won't be later.



                      So now consider what happens when you initiate an electric current. By the first principle, there must be a magnetic field. By the second, this field represents energy, and that energy has to be sourced. Since you cannot have a current without this magnetic field, then that means it has to take energy to cause the current, and thus the power source you are using has to do work.



                      Likewise, when the power source is withdrawn, the magnetic field begins to falter, and its energy has to go somewhere. That energy goes now into keeping the current flowing for longer.



                      Moreover, you should be able to see then that any and all circuit elements have inductance, not just "inductors", and it is impossible to avoid, because to do so you would need to have a current without establishing any magnetic field. "Inductors" are simply components specially designed to exaggerate the effect.






                      share|cite|improve this answer









                      $endgroup$



















                        0












                        $begingroup$

                        In classical electromagnetic theory, the effect works like this. The laws of physics dictate that whenever you have an electric current (i.e. charge in motion), there must be an associated magnetic field with it.



                        Now, those same laws also say that electromagnetic fields, of which purely magnetic fields are a special case, contain energy. By conservation of energy, that energy has to come from somewhere, if it wasn't there before, and it has to go somewhere as well, if it is there now but won't be later.



                        So now consider what happens when you initiate an electric current. By the first principle, there must be a magnetic field. By the second, this field represents energy, and that energy has to be sourced. Since you cannot have a current without this magnetic field, then that means it has to take energy to cause the current, and thus the power source you are using has to do work.



                        Likewise, when the power source is withdrawn, the magnetic field begins to falter, and its energy has to go somewhere. That energy goes now into keeping the current flowing for longer.



                        Moreover, you should be able to see then that any and all circuit elements have inductance, not just "inductors", and it is impossible to avoid, because to do so you would need to have a current without establishing any magnetic field. "Inductors" are simply components specially designed to exaggerate the effect.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          0








                          0





                          $begingroup$

                          In classical electromagnetic theory, the effect works like this. The laws of physics dictate that whenever you have an electric current (i.e. charge in motion), there must be an associated magnetic field with it.



                          Now, those same laws also say that electromagnetic fields, of which purely magnetic fields are a special case, contain energy. By conservation of energy, that energy has to come from somewhere, if it wasn't there before, and it has to go somewhere as well, if it is there now but won't be later.



                          So now consider what happens when you initiate an electric current. By the first principle, there must be a magnetic field. By the second, this field represents energy, and that energy has to be sourced. Since you cannot have a current without this magnetic field, then that means it has to take energy to cause the current, and thus the power source you are using has to do work.



                          Likewise, when the power source is withdrawn, the magnetic field begins to falter, and its energy has to go somewhere. That energy goes now into keeping the current flowing for longer.



                          Moreover, you should be able to see then that any and all circuit elements have inductance, not just "inductors", and it is impossible to avoid, because to do so you would need to have a current without establishing any magnetic field. "Inductors" are simply components specially designed to exaggerate the effect.






                          share|cite|improve this answer









                          $endgroup$



                          In classical electromagnetic theory, the effect works like this. The laws of physics dictate that whenever you have an electric current (i.e. charge in motion), there must be an associated magnetic field with it.



                          Now, those same laws also say that electromagnetic fields, of which purely magnetic fields are a special case, contain energy. By conservation of energy, that energy has to come from somewhere, if it wasn't there before, and it has to go somewhere as well, if it is there now but won't be later.



                          So now consider what happens when you initiate an electric current. By the first principle, there must be a magnetic field. By the second, this field represents energy, and that energy has to be sourced. Since you cannot have a current without this magnetic field, then that means it has to take energy to cause the current, and thus the power source you are using has to do work.



                          Likewise, when the power source is withdrawn, the magnetic field begins to falter, and its energy has to go somewhere. That energy goes now into keeping the current flowing for longer.



                          Moreover, you should be able to see then that any and all circuit elements have inductance, not just "inductors", and it is impossible to avoid, because to do so you would need to have a current without establishing any magnetic field. "Inductors" are simply components specially designed to exaggerate the effect.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 2 hours ago









                          The_SympathizerThe_Sympathizer

                          6,31012 silver badges30 bronze badges




                          6,31012 silver badges30 bronze badges























                              Yiyang Zhi is a new contributor. Be nice, and check out our Code of Conduct.









                              draft saved

                              draft discarded


















                              Yiyang Zhi is a new contributor. Be nice, and check out our Code of Conduct.












                              Yiyang Zhi is a new contributor. Be nice, and check out our Code of Conduct.











                              Yiyang Zhi is a new contributor. Be nice, and check out our Code of Conduct.














                              Thanks for contributing an answer to Physics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f494710%2fwhy-does-an-inductor-oppose-the-change-in-current-magnetic-field%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                              Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                              Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її