Value of a limit.Using Basics Limit ArithmeticsLimits problem to find the values of constants - a and b If $lim_x to infty(1+fracax+fracbx^2)^2x=e^2$ Find the value of $a$ and $b$.The limit of $sin(n^alpha)$finding limit: result division by nullWhat is the value of $lfloor100Nrfloor$Solve limit with Lagrange theoremA limit of n times sine values at factorially spaced argumentslimit and derivative questionDetermine this limit using L'Hopitals ruleApplication of Cauchy's first limit theorem

Should I put my name first or last in the team members list?

How can a class have multiple methods without breaking the single responsibility principle

Why does the Rust compiler not optimize code assuming that two mutable references cannot alias?

Best practice for keeping temperature constant during film development at home

Create two random teams from a list of players

Introduction to the Sicilian

What to expect in a jazz audition

My employer is refusing to give me the pay that was advertised after an internal job move

What is the full text of the song about the failed battle of Kiska?

Given mean and SD, can we approximate the underlying distribution?

How and when is the best time to reveal to new hires you are trans?

Can you remove a blindfold using the Telekinesis spell?

What Marvel character has this 'W' symbol?

Avoiding Implicit Conversion in Constructor. Explicit keyword doesn't help here

Word for soundtrack music which is part of the action of the movie

What are the cons of stateless password generators?

Should students have access to past exams or an exam bank?

What kind of horizontal stabilizer does a Boeing 737 have?

How do I respond appropriately to an overseas company that obtained a visa for me without hiring me?

What is my clock telling me to do?

In the Schrödinger equation, can I have a Hamiltonian without a kinetic term?

Why is Searing Smite not listed in the Roll20 Spell books?

How to innovate in OR

How char is processed in math mode?



Value of a limit.


Using Basics Limit ArithmeticsLimits problem to find the values of constants - a and b If $lim_x to infty(1+fracax+fracbx^2)^2x=e^2$ Find the value of $a$ and $b$.The limit of $sin(n^alpha)$finding limit: result division by nullWhat is the value of $lfloor100Nrfloor$Solve limit with Lagrange theoremA limit of n times sine values at factorially spaced argumentslimit and derivative questionDetermine this limit using L'Hopitals ruleApplication of Cauchy's first limit theorem






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


The value of the $$limlimits_xto-infty(4x^2-x)^1/2 +2x$$ is?



The answer given is $1/4$.



I rationalized and got $$limlimits_xto-infty frac -x[(4- frac 1x)^1/2-2]$$ how to proceed further?










share|cite|improve this question











$endgroup$













  • $begingroup$
    @YvesDaoust Yes, I misread it.
    $endgroup$
    – saulspatz
    8 hours ago






  • 1




    $begingroup$
    I don't see how your rationalization works. $-2|x|neq -2x.$ In particular, when $x$ is negative $2x=-2|x|.$
    $endgroup$
    – Thomas Andrews
    8 hours ago







  • 1




    $begingroup$
    You should get a rationalization: $$frac$$ when $x<0.$
    $endgroup$
    – Thomas Andrews
    8 hours ago











  • $begingroup$
    @ThomasAndrews Yes, that's where I made the mistake.
    $endgroup$
    – Tapi
    8 hours ago

















2












$begingroup$


The value of the $$limlimits_xto-infty(4x^2-x)^1/2 +2x$$ is?



The answer given is $1/4$.



I rationalized and got $$limlimits_xto-infty frac -x[(4- frac 1x)^1/2-2]$$ how to proceed further?










share|cite|improve this question











$endgroup$













  • $begingroup$
    @YvesDaoust Yes, I misread it.
    $endgroup$
    – saulspatz
    8 hours ago






  • 1




    $begingroup$
    I don't see how your rationalization works. $-2|x|neq -2x.$ In particular, when $x$ is negative $2x=-2|x|.$
    $endgroup$
    – Thomas Andrews
    8 hours ago







  • 1




    $begingroup$
    You should get a rationalization: $$frac$$ when $x<0.$
    $endgroup$
    – Thomas Andrews
    8 hours ago











  • $begingroup$
    @ThomasAndrews Yes, that's where I made the mistake.
    $endgroup$
    – Tapi
    8 hours ago













2












2








2





$begingroup$


The value of the $$limlimits_xto-infty(4x^2-x)^1/2 +2x$$ is?



The answer given is $1/4$.



I rationalized and got $$limlimits_xto-infty frac -x[(4- frac 1x)^1/2-2]$$ how to proceed further?










share|cite|improve this question











$endgroup$




The value of the $$limlimits_xto-infty(4x^2-x)^1/2 +2x$$ is?



The answer given is $1/4$.



I rationalized and got $$limlimits_xto-infty frac -x[(4- frac 1x)^1/2-2]$$ how to proceed further?







algebra-precalculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 8 hours ago







Tapi

















asked 8 hours ago









TapiTapi

4321 silver badge17 bronze badges




4321 silver badge17 bronze badges














  • $begingroup$
    @YvesDaoust Yes, I misread it.
    $endgroup$
    – saulspatz
    8 hours ago






  • 1




    $begingroup$
    I don't see how your rationalization works. $-2|x|neq -2x.$ In particular, when $x$ is negative $2x=-2|x|.$
    $endgroup$
    – Thomas Andrews
    8 hours ago







  • 1




    $begingroup$
    You should get a rationalization: $$frac$$ when $x<0.$
    $endgroup$
    – Thomas Andrews
    8 hours ago











  • $begingroup$
    @ThomasAndrews Yes, that's where I made the mistake.
    $endgroup$
    – Tapi
    8 hours ago
















  • $begingroup$
    @YvesDaoust Yes, I misread it.
    $endgroup$
    – saulspatz
    8 hours ago






  • 1




    $begingroup$
    I don't see how your rationalization works. $-2|x|neq -2x.$ In particular, when $x$ is negative $2x=-2|x|.$
    $endgroup$
    – Thomas Andrews
    8 hours ago







  • 1




    $begingroup$
    You should get a rationalization: $$frac$$ when $x<0.$
    $endgroup$
    – Thomas Andrews
    8 hours ago











  • $begingroup$
    @ThomasAndrews Yes, that's where I made the mistake.
    $endgroup$
    – Tapi
    8 hours ago















$begingroup$
@YvesDaoust Yes, I misread it.
$endgroup$
– saulspatz
8 hours ago




$begingroup$
@YvesDaoust Yes, I misread it.
$endgroup$
– saulspatz
8 hours ago




1




1




$begingroup$
I don't see how your rationalization works. $-2|x|neq -2x.$ In particular, when $x$ is negative $2x=-2|x|.$
$endgroup$
– Thomas Andrews
8 hours ago





$begingroup$
I don't see how your rationalization works. $-2|x|neq -2x.$ In particular, when $x$ is negative $2x=-2|x|.$
$endgroup$
– Thomas Andrews
8 hours ago





1




1




$begingroup$
You should get a rationalization: $$frac$$ when $x<0.$
$endgroup$
– Thomas Andrews
8 hours ago





$begingroup$
You should get a rationalization: $$frac$$ when $x<0.$
$endgroup$
– Thomas Andrews
8 hours ago













$begingroup$
@ThomasAndrews Yes, that's where I made the mistake.
$endgroup$
– Tapi
8 hours ago




$begingroup$
@ThomasAndrews Yes, that's where I made the mistake.
$endgroup$
– Tapi
8 hours ago










7 Answers
7






active

oldest

votes


















3












$begingroup$

The limit is equivalent to
$$beginalign
lim_xto-inftyleft(2|x|left(1-frac14xright)^1/2+2xright)
&=lim_xto-inftyleft(-2xleft(1-frac14xright)^1/2+2xright)\
&=lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)\
endalign$$

Then using the generalized binomial expansion we get that as $xto0$
$$(1+x)^n=1+nx+o(x)$$
Hence our limit becomes
$$beginalign
lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)
&=lim_xto-infty-2xleft(1-frac18x+oleft(frac1xright)-1right)\
&=lim_xto-infty-2xleft(-frac18x+oleft(frac1xright)right)\
&=lim_xto-inftyleft(frac14+o(1)right)\
&=frac14\
endalign$$






share|cite|improve this answer









$endgroup$






















    4












    $begingroup$

    A more elemental solution :
    $$lim_xto -infty big( sqrt4x^2-x +2x big) =lim_xto -infty frac-xsqrt4x^2-x -2x =lim_xto infty fracxsqrt4x^2+x+2x =lim_xtoinfty frac1sqrt4+frac1x+2 = frac1sqrt4+2=frac14$$
    where I used that
    $$lim_xto infty f(x)=lim_xto -infty f(-x)$$






    share|cite|improve this answer











    $endgroup$






















      1












      $begingroup$

      beginalign*
      (4x^2-x)^1/2+2x
      &=sqrt4x^2-x+2x
      \&=frac(sqrt4x^2-x+2x)(sqrt4x^2-x-2x)sqrt4x^2-x-2x
      \&=frac(4x^2-x)-4x^2sqrt4x^2-x-2x
      \&=frac4x^2-x-4x^2sqrt4x^2-x-2x
      \&=frac-xsqrt4x^2-x-2x
      \&=frac-xsqrt(2x)^2(1-frac14x)-2x
      \&=frac-x2
      \&qquad [x<0]
      \&=frac-x-2xsqrt1-frac14x-2x
      \&=frac12sqrt1-frac14x+2
      \&tofrac12sqrt1+0+2
      \&=frac14.
      endalign*

      (as $xto-infty$)






      share|cite|improve this answer









      $endgroup$






















        1












        $begingroup$

        Your rationalization is almost correct. It should be



        $$frac-xsqrt4x^2-x-2x = frac-xx.$$



        You have assumed that $-2x = -2|x|,$ which is not true when $x$ is negative. But as $xto-infty,$ we can asume $x<0$ and thus $|x|=-x,$ so this is equal to



        $$frac1left(4-frac1xright)^1/2+2.$$






        share|cite|improve this answer











        $endgroup$






















          0












          $begingroup$

          For the sake of comfort, we change the sign and evaluate



          $$limlimits_xtoinfty(4x^2+x)^1/2-2x$$



          which is



          $$limlimits_xtoinftyfracx(4x^2+x)^1/2+2x$$



          or



          $$limlimits_xtoinftyfrac1(4+frac1x)^1/2+2=frac14.$$






          share|cite|improve this answer









          $endgroup$






















            0












            $begingroup$

            $y:=-x$, and $ lim y rightarrow +infty$.



            $(4y^2+y)^1/2-2y=$



            $((2y+1/4)^2-1/16)^1/2-2y$;



            $z:=2y+1/4$;



            We get



            $((z^2-1/16)^1/2-z) +1/4$;



            Since



            $lim_z rightarrow infty (z^2-1/16)^1/2-z)=0$ (why?), and we are done.



            Note:



            $(z^2-1/16)^1/2-(z^2)^1/2= $



            $dfrac-1/16(z^2-1/16)^1/2+(z^2)^1/2$






            share|cite|improve this answer











            $endgroup$






















              0












              $begingroup$

              Hint: Multiply by $sqrt4x^2-x-2xover sqrt4x^2-x-2x$



              The result is $-xoversqrt4x^2-x-2x$



              $=-xover sqrt4-1over x+2=$



              $-xover -xsqrt4-1over x+2$



              $1over sqrt4-1over x+2$.






              share|cite|improve this answer











              $endgroup$














              • $begingroup$
                $-2x$ is not under the root.
                $endgroup$
                – Tapi
                8 hours ago










              • $begingroup$
                $-2x=2|x|,$ at least when $x<0.$
                $endgroup$
                – Thomas Andrews
                8 hours ago










              • $begingroup$
                This answer is still wrong. Instead of $-frac 2x$ in the denominator, it should be simple $+2.$
                $endgroup$
                – Thomas Andrews
                6 hours ago













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3310615%2fvalue-of-a-limit%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              7 Answers
              7






              active

              oldest

              votes








              7 Answers
              7






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              The limit is equivalent to
              $$beginalign
              lim_xto-inftyleft(2|x|left(1-frac14xright)^1/2+2xright)
              &=lim_xto-inftyleft(-2xleft(1-frac14xright)^1/2+2xright)\
              &=lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)\
              endalign$$

              Then using the generalized binomial expansion we get that as $xto0$
              $$(1+x)^n=1+nx+o(x)$$
              Hence our limit becomes
              $$beginalign
              lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)
              &=lim_xto-infty-2xleft(1-frac18x+oleft(frac1xright)-1right)\
              &=lim_xto-infty-2xleft(-frac18x+oleft(frac1xright)right)\
              &=lim_xto-inftyleft(frac14+o(1)right)\
              &=frac14\
              endalign$$






              share|cite|improve this answer









              $endgroup$



















                3












                $begingroup$

                The limit is equivalent to
                $$beginalign
                lim_xto-inftyleft(2|x|left(1-frac14xright)^1/2+2xright)
                &=lim_xto-inftyleft(-2xleft(1-frac14xright)^1/2+2xright)\
                &=lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)\
                endalign$$

                Then using the generalized binomial expansion we get that as $xto0$
                $$(1+x)^n=1+nx+o(x)$$
                Hence our limit becomes
                $$beginalign
                lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)
                &=lim_xto-infty-2xleft(1-frac18x+oleft(frac1xright)-1right)\
                &=lim_xto-infty-2xleft(-frac18x+oleft(frac1xright)right)\
                &=lim_xto-inftyleft(frac14+o(1)right)\
                &=frac14\
                endalign$$






                share|cite|improve this answer









                $endgroup$

















                  3












                  3








                  3





                  $begingroup$

                  The limit is equivalent to
                  $$beginalign
                  lim_xto-inftyleft(2|x|left(1-frac14xright)^1/2+2xright)
                  &=lim_xto-inftyleft(-2xleft(1-frac14xright)^1/2+2xright)\
                  &=lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)\
                  endalign$$

                  Then using the generalized binomial expansion we get that as $xto0$
                  $$(1+x)^n=1+nx+o(x)$$
                  Hence our limit becomes
                  $$beginalign
                  lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)
                  &=lim_xto-infty-2xleft(1-frac18x+oleft(frac1xright)-1right)\
                  &=lim_xto-infty-2xleft(-frac18x+oleft(frac1xright)right)\
                  &=lim_xto-inftyleft(frac14+o(1)right)\
                  &=frac14\
                  endalign$$






                  share|cite|improve this answer









                  $endgroup$



                  The limit is equivalent to
                  $$beginalign
                  lim_xto-inftyleft(2|x|left(1-frac14xright)^1/2+2xright)
                  &=lim_xto-inftyleft(-2xleft(1-frac14xright)^1/2+2xright)\
                  &=lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)\
                  endalign$$

                  Then using the generalized binomial expansion we get that as $xto0$
                  $$(1+x)^n=1+nx+o(x)$$
                  Hence our limit becomes
                  $$beginalign
                  lim_xto-infty-2xleft(left(1-frac14xright)^1/2-1right)
                  &=lim_xto-infty-2xleft(1-frac18x+oleft(frac1xright)-1right)\
                  &=lim_xto-infty-2xleft(-frac18x+oleft(frac1xright)right)\
                  &=lim_xto-inftyleft(frac14+o(1)right)\
                  &=frac14\
                  endalign$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 8 hours ago









                  Peter ForemanPeter Foreman

                  13k1 gold badge5 silver badges29 bronze badges




                  13k1 gold badge5 silver badges29 bronze badges


























                      4












                      $begingroup$

                      A more elemental solution :
                      $$lim_xto -infty big( sqrt4x^2-x +2x big) =lim_xto -infty frac-xsqrt4x^2-x -2x =lim_xto infty fracxsqrt4x^2+x+2x =lim_xtoinfty frac1sqrt4+frac1x+2 = frac1sqrt4+2=frac14$$
                      where I used that
                      $$lim_xto infty f(x)=lim_xto -infty f(-x)$$






                      share|cite|improve this answer











                      $endgroup$



















                        4












                        $begingroup$

                        A more elemental solution :
                        $$lim_xto -infty big( sqrt4x^2-x +2x big) =lim_xto -infty frac-xsqrt4x^2-x -2x =lim_xto infty fracxsqrt4x^2+x+2x =lim_xtoinfty frac1sqrt4+frac1x+2 = frac1sqrt4+2=frac14$$
                        where I used that
                        $$lim_xto infty f(x)=lim_xto -infty f(-x)$$






                        share|cite|improve this answer











                        $endgroup$

















                          4












                          4








                          4





                          $begingroup$

                          A more elemental solution :
                          $$lim_xto -infty big( sqrt4x^2-x +2x big) =lim_xto -infty frac-xsqrt4x^2-x -2x =lim_xto infty fracxsqrt4x^2+x+2x =lim_xtoinfty frac1sqrt4+frac1x+2 = frac1sqrt4+2=frac14$$
                          where I used that
                          $$lim_xto infty f(x)=lim_xto -infty f(-x)$$






                          share|cite|improve this answer











                          $endgroup$



                          A more elemental solution :
                          $$lim_xto -infty big( sqrt4x^2-x +2x big) =lim_xto -infty frac-xsqrt4x^2-x -2x =lim_xto infty fracxsqrt4x^2+x+2x =lim_xtoinfty frac1sqrt4+frac1x+2 = frac1sqrt4+2=frac14$$
                          where I used that
                          $$lim_xto infty f(x)=lim_xto -infty f(-x)$$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 8 hours ago

























                          answered 8 hours ago









                          Azif00Azif00

                          3,0342 silver badges14 bronze badges




                          3,0342 silver badges14 bronze badges
























                              1












                              $begingroup$

                              beginalign*
                              (4x^2-x)^1/2+2x
                              &=sqrt4x^2-x+2x
                              \&=frac(sqrt4x^2-x+2x)(sqrt4x^2-x-2x)sqrt4x^2-x-2x
                              \&=frac(4x^2-x)-4x^2sqrt4x^2-x-2x
                              \&=frac4x^2-x-4x^2sqrt4x^2-x-2x
                              \&=frac-xsqrt4x^2-x-2x
                              \&=frac-xsqrt(2x)^2(1-frac14x)-2x
                              \&=frac-x2
                              \&qquad [x<0]
                              \&=frac-x-2xsqrt1-frac14x-2x
                              \&=frac12sqrt1-frac14x+2
                              \&tofrac12sqrt1+0+2
                              \&=frac14.
                              endalign*

                              (as $xto-infty$)






                              share|cite|improve this answer









                              $endgroup$



















                                1












                                $begingroup$

                                beginalign*
                                (4x^2-x)^1/2+2x
                                &=sqrt4x^2-x+2x
                                \&=frac(sqrt4x^2-x+2x)(sqrt4x^2-x-2x)sqrt4x^2-x-2x
                                \&=frac(4x^2-x)-4x^2sqrt4x^2-x-2x
                                \&=frac4x^2-x-4x^2sqrt4x^2-x-2x
                                \&=frac-xsqrt4x^2-x-2x
                                \&=frac-xsqrt(2x)^2(1-frac14x)-2x
                                \&=frac-x2
                                \&qquad [x<0]
                                \&=frac-x-2xsqrt1-frac14x-2x
                                \&=frac12sqrt1-frac14x+2
                                \&tofrac12sqrt1+0+2
                                \&=frac14.
                                endalign*

                                (as $xto-infty$)






                                share|cite|improve this answer









                                $endgroup$

















                                  1












                                  1








                                  1





                                  $begingroup$

                                  beginalign*
                                  (4x^2-x)^1/2+2x
                                  &=sqrt4x^2-x+2x
                                  \&=frac(sqrt4x^2-x+2x)(sqrt4x^2-x-2x)sqrt4x^2-x-2x
                                  \&=frac(4x^2-x)-4x^2sqrt4x^2-x-2x
                                  \&=frac4x^2-x-4x^2sqrt4x^2-x-2x
                                  \&=frac-xsqrt4x^2-x-2x
                                  \&=frac-xsqrt(2x)^2(1-frac14x)-2x
                                  \&=frac-x2
                                  \&qquad [x<0]
                                  \&=frac-x-2xsqrt1-frac14x-2x
                                  \&=frac12sqrt1-frac14x+2
                                  \&tofrac12sqrt1+0+2
                                  \&=frac14.
                                  endalign*

                                  (as $xto-infty$)






                                  share|cite|improve this answer









                                  $endgroup$



                                  beginalign*
                                  (4x^2-x)^1/2+2x
                                  &=sqrt4x^2-x+2x
                                  \&=frac(sqrt4x^2-x+2x)(sqrt4x^2-x-2x)sqrt4x^2-x-2x
                                  \&=frac(4x^2-x)-4x^2sqrt4x^2-x-2x
                                  \&=frac4x^2-x-4x^2sqrt4x^2-x-2x
                                  \&=frac-xsqrt4x^2-x-2x
                                  \&=frac-xsqrt(2x)^2(1-frac14x)-2x
                                  \&=frac-x2
                                  \&qquad [x<0]
                                  \&=frac-x-2xsqrt1-frac14x-2x
                                  \&=frac12sqrt1-frac14x+2
                                  \&tofrac12sqrt1+0+2
                                  \&=frac14.
                                  endalign*

                                  (as $xto-infty$)







                                  share|cite|improve this answer












                                  share|cite|improve this answer



                                  share|cite|improve this answer










                                  answered 8 hours ago









                                  mf67mf67

                                  455 bronze badges




                                  455 bronze badges
























                                      1












                                      $begingroup$

                                      Your rationalization is almost correct. It should be



                                      $$frac-xsqrt4x^2-x-2x = frac-xx.$$



                                      You have assumed that $-2x = -2|x|,$ which is not true when $x$ is negative. But as $xto-infty,$ we can asume $x<0$ and thus $|x|=-x,$ so this is equal to



                                      $$frac1left(4-frac1xright)^1/2+2.$$






                                      share|cite|improve this answer











                                      $endgroup$



















                                        1












                                        $begingroup$

                                        Your rationalization is almost correct. It should be



                                        $$frac-xsqrt4x^2-x-2x = frac-xx.$$



                                        You have assumed that $-2x = -2|x|,$ which is not true when $x$ is negative. But as $xto-infty,$ we can asume $x<0$ and thus $|x|=-x,$ so this is equal to



                                        $$frac1left(4-frac1xright)^1/2+2.$$






                                        share|cite|improve this answer











                                        $endgroup$

















                                          1












                                          1








                                          1





                                          $begingroup$

                                          Your rationalization is almost correct. It should be



                                          $$frac-xsqrt4x^2-x-2x = frac-xx.$$



                                          You have assumed that $-2x = -2|x|,$ which is not true when $x$ is negative. But as $xto-infty,$ we can asume $x<0$ and thus $|x|=-x,$ so this is equal to



                                          $$frac1left(4-frac1xright)^1/2+2.$$






                                          share|cite|improve this answer











                                          $endgroup$



                                          Your rationalization is almost correct. It should be



                                          $$frac-xsqrt4x^2-x-2x = frac-xx.$$



                                          You have assumed that $-2x = -2|x|,$ which is not true when $x$ is negative. But as $xto-infty,$ we can asume $x<0$ and thus $|x|=-x,$ so this is equal to



                                          $$frac1left(4-frac1xright)^1/2+2.$$







                                          share|cite|improve this answer














                                          share|cite|improve this answer



                                          share|cite|improve this answer








                                          edited 7 hours ago









                                          Mars Plastic

                                          3,0475 silver badges33 bronze badges




                                          3,0475 silver badges33 bronze badges










                                          answered 8 hours ago









                                          Thomas AndrewsThomas Andrews

                                          134k13 gold badges149 silver badges303 bronze badges




                                          134k13 gold badges149 silver badges303 bronze badges
























                                              0












                                              $begingroup$

                                              For the sake of comfort, we change the sign and evaluate



                                              $$limlimits_xtoinfty(4x^2+x)^1/2-2x$$



                                              which is



                                              $$limlimits_xtoinftyfracx(4x^2+x)^1/2+2x$$



                                              or



                                              $$limlimits_xtoinftyfrac1(4+frac1x)^1/2+2=frac14.$$






                                              share|cite|improve this answer









                                              $endgroup$



















                                                0












                                                $begingroup$

                                                For the sake of comfort, we change the sign and evaluate



                                                $$limlimits_xtoinfty(4x^2+x)^1/2-2x$$



                                                which is



                                                $$limlimits_xtoinftyfracx(4x^2+x)^1/2+2x$$



                                                or



                                                $$limlimits_xtoinftyfrac1(4+frac1x)^1/2+2=frac14.$$






                                                share|cite|improve this answer









                                                $endgroup$

















                                                  0












                                                  0








                                                  0





                                                  $begingroup$

                                                  For the sake of comfort, we change the sign and evaluate



                                                  $$limlimits_xtoinfty(4x^2+x)^1/2-2x$$



                                                  which is



                                                  $$limlimits_xtoinftyfracx(4x^2+x)^1/2+2x$$



                                                  or



                                                  $$limlimits_xtoinftyfrac1(4+frac1x)^1/2+2=frac14.$$






                                                  share|cite|improve this answer









                                                  $endgroup$



                                                  For the sake of comfort, we change the sign and evaluate



                                                  $$limlimits_xtoinfty(4x^2+x)^1/2-2x$$



                                                  which is



                                                  $$limlimits_xtoinftyfracx(4x^2+x)^1/2+2x$$



                                                  or



                                                  $$limlimits_xtoinftyfrac1(4+frac1x)^1/2+2=frac14.$$







                                                  share|cite|improve this answer












                                                  share|cite|improve this answer



                                                  share|cite|improve this answer










                                                  answered 8 hours ago









                                                  Yves DaoustYves Daoust

                                                  143k10 gold badges87 silver badges242 bronze badges




                                                  143k10 gold badges87 silver badges242 bronze badges
























                                                      0












                                                      $begingroup$

                                                      $y:=-x$, and $ lim y rightarrow +infty$.



                                                      $(4y^2+y)^1/2-2y=$



                                                      $((2y+1/4)^2-1/16)^1/2-2y$;



                                                      $z:=2y+1/4$;



                                                      We get



                                                      $((z^2-1/16)^1/2-z) +1/4$;



                                                      Since



                                                      $lim_z rightarrow infty (z^2-1/16)^1/2-z)=0$ (why?), and we are done.



                                                      Note:



                                                      $(z^2-1/16)^1/2-(z^2)^1/2= $



                                                      $dfrac-1/16(z^2-1/16)^1/2+(z^2)^1/2$






                                                      share|cite|improve this answer











                                                      $endgroup$



















                                                        0












                                                        $begingroup$

                                                        $y:=-x$, and $ lim y rightarrow +infty$.



                                                        $(4y^2+y)^1/2-2y=$



                                                        $((2y+1/4)^2-1/16)^1/2-2y$;



                                                        $z:=2y+1/4$;



                                                        We get



                                                        $((z^2-1/16)^1/2-z) +1/4$;



                                                        Since



                                                        $lim_z rightarrow infty (z^2-1/16)^1/2-z)=0$ (why?), and we are done.



                                                        Note:



                                                        $(z^2-1/16)^1/2-(z^2)^1/2= $



                                                        $dfrac-1/16(z^2-1/16)^1/2+(z^2)^1/2$






                                                        share|cite|improve this answer











                                                        $endgroup$

















                                                          0












                                                          0








                                                          0





                                                          $begingroup$

                                                          $y:=-x$, and $ lim y rightarrow +infty$.



                                                          $(4y^2+y)^1/2-2y=$



                                                          $((2y+1/4)^2-1/16)^1/2-2y$;



                                                          $z:=2y+1/4$;



                                                          We get



                                                          $((z^2-1/16)^1/2-z) +1/4$;



                                                          Since



                                                          $lim_z rightarrow infty (z^2-1/16)^1/2-z)=0$ (why?), and we are done.



                                                          Note:



                                                          $(z^2-1/16)^1/2-(z^2)^1/2= $



                                                          $dfrac-1/16(z^2-1/16)^1/2+(z^2)^1/2$






                                                          share|cite|improve this answer











                                                          $endgroup$



                                                          $y:=-x$, and $ lim y rightarrow +infty$.



                                                          $(4y^2+y)^1/2-2y=$



                                                          $((2y+1/4)^2-1/16)^1/2-2y$;



                                                          $z:=2y+1/4$;



                                                          We get



                                                          $((z^2-1/16)^1/2-z) +1/4$;



                                                          Since



                                                          $lim_z rightarrow infty (z^2-1/16)^1/2-z)=0$ (why?), and we are done.



                                                          Note:



                                                          $(z^2-1/16)^1/2-(z^2)^1/2= $



                                                          $dfrac-1/16(z^2-1/16)^1/2+(z^2)^1/2$







                                                          share|cite|improve this answer














                                                          share|cite|improve this answer



                                                          share|cite|improve this answer








                                                          edited 7 hours ago

























                                                          answered 8 hours ago









                                                          Peter SzilasPeter Szilas

                                                          13k2 gold badges8 silver badges23 bronze badges




                                                          13k2 gold badges8 silver badges23 bronze badges
























                                                              0












                                                              $begingroup$

                                                              Hint: Multiply by $sqrt4x^2-x-2xover sqrt4x^2-x-2x$



                                                              The result is $-xoversqrt4x^2-x-2x$



                                                              $=-xover sqrt4-1over x+2=$



                                                              $-xover -xsqrt4-1over x+2$



                                                              $1over sqrt4-1over x+2$.






                                                              share|cite|improve this answer











                                                              $endgroup$














                                                              • $begingroup$
                                                                $-2x$ is not under the root.
                                                                $endgroup$
                                                                – Tapi
                                                                8 hours ago










                                                              • $begingroup$
                                                                $-2x=2|x|,$ at least when $x<0.$
                                                                $endgroup$
                                                                – Thomas Andrews
                                                                8 hours ago










                                                              • $begingroup$
                                                                This answer is still wrong. Instead of $-frac 2x$ in the denominator, it should be simple $+2.$
                                                                $endgroup$
                                                                – Thomas Andrews
                                                                6 hours ago















                                                              0












                                                              $begingroup$

                                                              Hint: Multiply by $sqrt4x^2-x-2xover sqrt4x^2-x-2x$



                                                              The result is $-xoversqrt4x^2-x-2x$



                                                              $=-xover sqrt4-1over x+2=$



                                                              $-xover -xsqrt4-1over x+2$



                                                              $1over sqrt4-1over x+2$.






                                                              share|cite|improve this answer











                                                              $endgroup$














                                                              • $begingroup$
                                                                $-2x$ is not under the root.
                                                                $endgroup$
                                                                – Tapi
                                                                8 hours ago










                                                              • $begingroup$
                                                                $-2x=2|x|,$ at least when $x<0.$
                                                                $endgroup$
                                                                – Thomas Andrews
                                                                8 hours ago










                                                              • $begingroup$
                                                                This answer is still wrong. Instead of $-frac 2x$ in the denominator, it should be simple $+2.$
                                                                $endgroup$
                                                                – Thomas Andrews
                                                                6 hours ago













                                                              0












                                                              0








                                                              0





                                                              $begingroup$

                                                              Hint: Multiply by $sqrt4x^2-x-2xover sqrt4x^2-x-2x$



                                                              The result is $-xoversqrt4x^2-x-2x$



                                                              $=-xover sqrt4-1over x+2=$



                                                              $-xover -xsqrt4-1over x+2$



                                                              $1over sqrt4-1over x+2$.






                                                              share|cite|improve this answer











                                                              $endgroup$



                                                              Hint: Multiply by $sqrt4x^2-x-2xover sqrt4x^2-x-2x$



                                                              The result is $-xoversqrt4x^2-x-2x$



                                                              $=-xover sqrt4-1over x+2=$



                                                              $-xover -xsqrt4-1over x+2$



                                                              $1over sqrt4-1over x+2$.







                                                              share|cite|improve this answer














                                                              share|cite|improve this answer



                                                              share|cite|improve this answer








                                                              edited 3 hours ago

























                                                              answered 8 hours ago









                                                              Tsemo AristideTsemo Aristide

                                                              64.9k1 gold badge15 silver badges48 bronze badges




                                                              64.9k1 gold badge15 silver badges48 bronze badges














                                                              • $begingroup$
                                                                $-2x$ is not under the root.
                                                                $endgroup$
                                                                – Tapi
                                                                8 hours ago










                                                              • $begingroup$
                                                                $-2x=2|x|,$ at least when $x<0.$
                                                                $endgroup$
                                                                – Thomas Andrews
                                                                8 hours ago










                                                              • $begingroup$
                                                                This answer is still wrong. Instead of $-frac 2x$ in the denominator, it should be simple $+2.$
                                                                $endgroup$
                                                                – Thomas Andrews
                                                                6 hours ago
















                                                              • $begingroup$
                                                                $-2x$ is not under the root.
                                                                $endgroup$
                                                                – Tapi
                                                                8 hours ago










                                                              • $begingroup$
                                                                $-2x=2|x|,$ at least when $x<0.$
                                                                $endgroup$
                                                                – Thomas Andrews
                                                                8 hours ago










                                                              • $begingroup$
                                                                This answer is still wrong. Instead of $-frac 2x$ in the denominator, it should be simple $+2.$
                                                                $endgroup$
                                                                – Thomas Andrews
                                                                6 hours ago















                                                              $begingroup$
                                                              $-2x$ is not under the root.
                                                              $endgroup$
                                                              – Tapi
                                                              8 hours ago




                                                              $begingroup$
                                                              $-2x$ is not under the root.
                                                              $endgroup$
                                                              – Tapi
                                                              8 hours ago












                                                              $begingroup$
                                                              $-2x=2|x|,$ at least when $x<0.$
                                                              $endgroup$
                                                              – Thomas Andrews
                                                              8 hours ago




                                                              $begingroup$
                                                              $-2x=2|x|,$ at least when $x<0.$
                                                              $endgroup$
                                                              – Thomas Andrews
                                                              8 hours ago












                                                              $begingroup$
                                                              This answer is still wrong. Instead of $-frac 2x$ in the denominator, it should be simple $+2.$
                                                              $endgroup$
                                                              – Thomas Andrews
                                                              6 hours ago




                                                              $begingroup$
                                                              This answer is still wrong. Instead of $-frac 2x$ in the denominator, it should be simple $+2.$
                                                              $endgroup$
                                                              – Thomas Andrews
                                                              6 hours ago

















                                                              draft saved

                                                              draft discarded
















































                                                              Thanks for contributing an answer to Mathematics Stack Exchange!


                                                              • Please be sure to answer the question. Provide details and share your research!

                                                              But avoid


                                                              • Asking for help, clarification, or responding to other answers.

                                                              • Making statements based on opinion; back them up with references or personal experience.

                                                              Use MathJax to format equations. MathJax reference.


                                                              To learn more, see our tips on writing great answers.




                                                              draft saved


                                                              draft discarded














                                                              StackExchange.ready(
                                                              function ()
                                                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3310615%2fvalue-of-a-limit%23new-answer', 'question_page');

                                                              );

                                                              Post as a guest















                                                              Required, but never shown





















































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown

































                                                              Required, but never shown














                                                              Required, but never shown












                                                              Required, but never shown







                                                              Required, but never shown







                                                              Popular posts from this blog

                                                              Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                                                              Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                                                              Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її