Adding things to bunches of things vs multiplicationWhat are the arguments for and against learning multiplication table by heart?Is it advisable to avoid teaching “multiplication as repeated addition”?Traditional “long” method of multiplication versus grid and partial products — evidence of better outcomes?Looking for a tool to create a digital multiplication quizWhen should a kid have memorized the multiplication table?Why is multiplication taught using cross notation at first?How to present the order of factors and summands for the usual multiplication procedureHow to explain the motivation of parentheses in addition, subtraction and multiplication?Best practices in teaching math to future elementary teachers

How can I find files in directories listed in a file?

How do I ask for 2-3 days per week remote work in a job interview?

Telephone number in spoken words

Did Pope Urban II issue the papal bull "terra nullius" in 1095?

A+ rating still unsecure by Google Chrome's opinion

How does the Moon's gravity affect Earth's oceans despite Earth's stronger gravitational pull?

How do I call a 6-digit Australian phone number with a US-based mobile phone?

Locked room poison mystery!

Why does Japan use the same type of AC power outlet as the US?

What is the prop for Thor's hammer (Mjölnir) made of?

What is the opposite of "hunger level"?

Heyawake: An Introductory Puzzle

How to gracefully leave a company you helped start?

Escape Velocity - Won't the orbital path just become larger with higher initial velocity?

When was "Fredo" an insult to Italian-Americans?

What would it take to get a message to another star?

What is the hottest thing in the universe?

Lípínguapua dopo Pêpê

Airline power sockets shut down when I plug my computer in. How can I avoid that?

Scam? Phone call from "Department of Social Security" asking me to call back

When did Bilbo and Frodo learn that Gandalf was a Maia?

How can I shoot a bow using Strength instead of Dexterity?

If a person claims to know anything could it be disproven by saying 'prove that we are not in a simulation'?

How can I communicate my issues with a potential date's pushy behavior?



Adding things to bunches of things vs multiplication


What are the arguments for and against learning multiplication table by heart?Is it advisable to avoid teaching “multiplication as repeated addition”?Traditional “long” method of multiplication versus grid and partial products — evidence of better outcomes?Looking for a tool to create a digital multiplication quizWhen should a kid have memorized the multiplication table?Why is multiplication taught using cross notation at first?How to present the order of factors and summands for the usual multiplication procedureHow to explain the motivation of parentheses in addition, subtraction and multiplication?Best practices in teaching math to future elementary teachers






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$



"Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?" — "Nine." — "How come?" — "Because 4 plus 5 is 9." — "But you cannot add boxes to pencils!" — "Why?"




Indeed, why? Why you can multiply boxes and pencils, but cannot add? This is sort of self-evident for most adults, but how do you explain it to an elementary-school student?



I came up with an approach calling a box a "bunch of things" (Common Core likes to use the word "group"), so a box by itself has no meaning, what does have meaning is that it groups, combines, ties together several things that we are actually interested in, say pencils. If each box combines the same amount of things, then we can define and use multiplication as quick addition of the same number of things.



Similar approach can be used to explain why you cannot add two tens of flowers and five flowers as 2 + 5 = 7, because it is not clear seven of what we are getting. First, we "unbunch" two tens into one, two, three, ..., twenty flowers, then add five flowers to them, so we can count them, twenty five flowers. It just so happens that by having ten-based positional system we can simply write 5 to the right of 2 to get the correct number, it won't work if we had two dozen flowers instead of two tens.



Another phrase commonly used is that you can add "like things", things that are similar. All this kinda works, but does not feel perfect, does not seem rigorous, persuasive enough. Does anyone have a better idea, approach, script to explain to kids why adding apples to apples is ok, but adding apples to apple crates is not?










share|improve this question









$endgroup$




















    1












    $begingroup$



    "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?" — "Nine." — "How come?" — "Because 4 plus 5 is 9." — "But you cannot add boxes to pencils!" — "Why?"




    Indeed, why? Why you can multiply boxes and pencils, but cannot add? This is sort of self-evident for most adults, but how do you explain it to an elementary-school student?



    I came up with an approach calling a box a "bunch of things" (Common Core likes to use the word "group"), so a box by itself has no meaning, what does have meaning is that it groups, combines, ties together several things that we are actually interested in, say pencils. If each box combines the same amount of things, then we can define and use multiplication as quick addition of the same number of things.



    Similar approach can be used to explain why you cannot add two tens of flowers and five flowers as 2 + 5 = 7, because it is not clear seven of what we are getting. First, we "unbunch" two tens into one, two, three, ..., twenty flowers, then add five flowers to them, so we can count them, twenty five flowers. It just so happens that by having ten-based positional system we can simply write 5 to the right of 2 to get the correct number, it won't work if we had two dozen flowers instead of two tens.



    Another phrase commonly used is that you can add "like things", things that are similar. All this kinda works, but does not feel perfect, does not seem rigorous, persuasive enough. Does anyone have a better idea, approach, script to explain to kids why adding apples to apples is ok, but adding apples to apple crates is not?










    share|improve this question









    $endgroup$
















      1












      1








      1





      $begingroup$



      "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?" — "Nine." — "How come?" — "Because 4 plus 5 is 9." — "But you cannot add boxes to pencils!" — "Why?"




      Indeed, why? Why you can multiply boxes and pencils, but cannot add? This is sort of self-evident for most adults, but how do you explain it to an elementary-school student?



      I came up with an approach calling a box a "bunch of things" (Common Core likes to use the word "group"), so a box by itself has no meaning, what does have meaning is that it groups, combines, ties together several things that we are actually interested in, say pencils. If each box combines the same amount of things, then we can define and use multiplication as quick addition of the same number of things.



      Similar approach can be used to explain why you cannot add two tens of flowers and five flowers as 2 + 5 = 7, because it is not clear seven of what we are getting. First, we "unbunch" two tens into one, two, three, ..., twenty flowers, then add five flowers to them, so we can count them, twenty five flowers. It just so happens that by having ten-based positional system we can simply write 5 to the right of 2 to get the correct number, it won't work if we had two dozen flowers instead of two tens.



      Another phrase commonly used is that you can add "like things", things that are similar. All this kinda works, but does not feel perfect, does not seem rigorous, persuasive enough. Does anyone have a better idea, approach, script to explain to kids why adding apples to apples is ok, but adding apples to apple crates is not?










      share|improve this question









      $endgroup$





      "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?" — "Nine." — "How come?" — "Because 4 plus 5 is 9." — "But you cannot add boxes to pencils!" — "Why?"




      Indeed, why? Why you can multiply boxes and pencils, but cannot add? This is sort of self-evident for most adults, but how do you explain it to an elementary-school student?



      I came up with an approach calling a box a "bunch of things" (Common Core likes to use the word "group"), so a box by itself has no meaning, what does have meaning is that it groups, combines, ties together several things that we are actually interested in, say pencils. If each box combines the same amount of things, then we can define and use multiplication as quick addition of the same number of things.



      Similar approach can be used to explain why you cannot add two tens of flowers and five flowers as 2 + 5 = 7, because it is not clear seven of what we are getting. First, we "unbunch" two tens into one, two, three, ..., twenty flowers, then add five flowers to them, so we can count them, twenty five flowers. It just so happens that by having ten-based positional system we can simply write 5 to the right of 2 to get the correct number, it won't work if we had two dozen flowers instead of two tens.



      Another phrase commonly used is that you can add "like things", things that are similar. All this kinda works, but does not feel perfect, does not seem rigorous, persuasive enough. Does anyone have a better idea, approach, script to explain to kids why adding apples to apples is ok, but adding apples to apple crates is not?







      primary-education arithmetic






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 11 hours ago









      Rusty CoreRusty Core

      3732 silver badges10 bronze badges




      3732 silver badges10 bronze badges























          5 Answers
          5






          active

          oldest

          votes


















          4












          $begingroup$


          Why you can multiply boxes and pencils, but cannot add?




          In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.






          share|improve this answer











          $endgroup$










          • 1




            $begingroup$
            Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
            $endgroup$
            – Nick C
            11 hours ago






          • 2




            $begingroup$
            I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
            $endgroup$
            – Rusty Core
            10 hours ago


















          1












          $begingroup$

          Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



          To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?






          share|improve this answer









          $endgroup$






















            1












            $begingroup$

            You can add, though it's more tedious.




            "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




            First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
            textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
            pencils.



            Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




            What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.






            share|improve this answer











            $endgroup$






















              0












              $begingroup$

              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.






              share|improve this answer









              $endgroup$














              • $begingroup$
                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                $endgroup$
                – Rusty Core
                1 hour ago










              • $begingroup$
                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                $endgroup$
                – Joel Reyes Noche
                57 mins ago



















              0












              $begingroup$

              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)






              share|improve this answer








              New contributor



              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
              Check out our Code of Conduct.





              $endgroup$














              • $begingroup$
                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                $endgroup$
                – Rusty Core
                1 hour ago










              • $begingroup$
                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                $endgroup$
                – guest
                47 mins ago














              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "548"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmatheducators.stackexchange.com%2fquestions%2f16941%2fadding-things-to-bunches-of-things-vs-multiplication%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              5 Answers
              5






              active

              oldest

              votes








              5 Answers
              5






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4












              $begingroup$


              Why you can multiply boxes and pencils, but cannot add?




              In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.






              share|improve this answer











              $endgroup$










              • 1




                $begingroup$
                Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
                $endgroup$
                – Nick C
                11 hours ago






              • 2




                $begingroup$
                I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
                $endgroup$
                – Rusty Core
                10 hours ago















              4












              $begingroup$


              Why you can multiply boxes and pencils, but cannot add?




              In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.






              share|improve this answer











              $endgroup$










              • 1




                $begingroup$
                Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
                $endgroup$
                – Nick C
                11 hours ago






              • 2




                $begingroup$
                I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
                $endgroup$
                – Rusty Core
                10 hours ago













              4












              4








              4





              $begingroup$


              Why you can multiply boxes and pencils, but cannot add?




              In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.






              share|improve this answer











              $endgroup$




              Why you can multiply boxes and pencils, but cannot add?




              In this case, you're multiplying pencils-per-box with boxes. The units cancel and you're left with pencils. Teach students to write fractions with units, and cancel accordingly, just as with numbers.







              share|improve this answer














              share|improve this answer



              share|improve this answer








              edited 8 hours ago









              Namaste

              6951 gold badge6 silver badges20 bronze badges




              6951 gold badge6 silver badges20 bronze badges










              answered 11 hours ago









              Nick CNick C

              2,7398 silver badges29 bronze badges




              2,7398 silver badges29 bronze badges










              • 1




                $begingroup$
                Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
                $endgroup$
                – Nick C
                11 hours ago






              • 2




                $begingroup$
                I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
                $endgroup$
                – Rusty Core
                10 hours ago












              • 1




                $begingroup$
                Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
                $endgroup$
                – Nick C
                11 hours ago






              • 2




                $begingroup$
                I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
                $endgroup$
                – Rusty Core
                10 hours ago







              1




              1




              $begingroup$
              Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
              $endgroup$
              – Nick C
              11 hours ago




              $begingroup$
              Maybe this should really be a comment, as it is really taking issue with X in "if you can do X, why can't you do Y".
              $endgroup$
              – Nick C
              11 hours ago




              2




              2




              $begingroup$
              I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
              $endgroup$
              – Rusty Core
              10 hours ago




              $begingroup$
              I don't see much of a conceptual difference between "cannot add pencils to boxes" and "cannot add pencils to pencils per box" that I can use for an elementary student to explain and convince him.
              $endgroup$
              – Rusty Core
              10 hours ago













              1












              $begingroup$

              Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



              To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?






              share|improve this answer









              $endgroup$



















                1












                $begingroup$

                Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



                To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?






                share|improve this answer









                $endgroup$

















                  1












                  1








                  1





                  $begingroup$

                  Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



                  To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?






                  share|improve this answer









                  $endgroup$



                  Here is where it helps to get more concrete instead of more general. Have the student draw a picture of the problem and similar problems. First, you demonstrate drawing one box of pencils (a square) with five pencils inside (perhaps five tally marks) and make sure they understand the picture. Then ask them to draw four boxes of pencils (four squares) each with five pencils inside. When you ask them how many pencils there are at this point (by saying the original question again, and tying it to their drawing), they should get a correct answer (perhaps encourage them to skip-count if they are not good at multiplying yet), and at that point you should be able to ask them why they think adding 4 pencils + 5 boxes doesn't work to answer the question. Their self-explanation will probably be much better at making sense to them than any way we try to do it, because they will have processed it in context of what they already know about adding. You can always help clarify their wording at this point, and help them refine their statement so that they get at the crux of the issue: "pencils" and "boxes of pencils" are different "wholes."



                  To take it a step further if they still have a hard time explaining it, have them draw three pencils plus two boxes of pencils and repeat the process. How many pencils are there? Why didn't 3 + 2 work? Draw 3 pencils + 2 pencils. How is this drawing different than 3 pencils + 2 boxes of pencils?







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 9 hours ago









                  Opal EOpal E

                  1,5168 silver badges26 bronze badges




                  1,5168 silver badges26 bronze badges
























                      1












                      $begingroup$

                      You can add, though it's more tedious.




                      "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




                      First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
                      textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
                      pencils.



                      Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




                      What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.






                      share|improve this answer











                      $endgroup$



















                        1












                        $begingroup$

                        You can add, though it's more tedious.




                        "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




                        First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
                        textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
                        pencils.



                        Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




                        What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.






                        share|improve this answer











                        $endgroup$

















                          1












                          1








                          1





                          $begingroup$

                          You can add, though it's more tedious.




                          "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




                          First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
                          textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
                          pencils.



                          Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




                          What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.






                          share|improve this answer











                          $endgroup$



                          You can add, though it's more tedious.




                          "Suppose you bought four boxes of pencils having five pencils in each, how many pencils do you have altogether?"




                          First box has five pencils. Second box has five pencils. Third box has five pencils. Fourth box has five pencils. Altogether, then, we have $underbrace5 text pencils_textbox 1 + underbrace5 text pencils_
                          textbox 2+underbrace5 text pencils_textbox 3 + underbrace5 text pencils_textbox 4 = 20$
                          pencils.



                          Or more conveniently, we can write $4 text box times dfrac5 text pencils textbox = 20$ pencils.




                          What you can't do is add one box of six apples, with 3 oranges, to get either 9 apples nor nine oranges, nor four apples, nor 4 oranges.







                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 8 hours ago

























                          answered 8 hours ago









                          NamasteNamaste

                          6951 gold badge6 silver badges20 bronze badges




                          6951 gold badge6 silver badges20 bronze badges
























                              0












                              $begingroup$

                              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



                              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



                              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.






                              share|improve this answer









                              $endgroup$














                              • $begingroup$
                                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                                $endgroup$
                                – Joel Reyes Noche
                                57 mins ago
















                              0












                              $begingroup$

                              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



                              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



                              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.






                              share|improve this answer









                              $endgroup$














                              • $begingroup$
                                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                                $endgroup$
                                – Joel Reyes Noche
                                57 mins ago














                              0












                              0








                              0





                              $begingroup$

                              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



                              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



                              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.






                              share|improve this answer









                              $endgroup$



                              I wonder if it would help to have them make up the problems, instead of you? Clearly, these students are already discounting the meaning of math.



                              There is lots of research on the efficacy of well-led classroom discussions about math topics. (Deborah Ball has written eloquently about this.)



                              One book I loved, set at this level, is Little Kids: Powerful Problem Solvers, by Angela Andrews.







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered 2 hours ago









                              Sue VanHattumSue VanHattum

                              10.1k1 gold badge22 silver badges64 bronze badges




                              10.1k1 gold badge22 silver badges64 bronze badges














                              • $begingroup$
                                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                                $endgroup$
                                – Joel Reyes Noche
                                57 mins ago

















                              • $begingroup$
                                "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                                $endgroup$
                                – Joel Reyes Noche
                                57 mins ago
















                              $begingroup$
                              "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                              $endgroup$
                              – Rusty Core
                              1 hour ago




                              $begingroup$
                              "Both authors have been closely associated with the NCTM standards, Paul as a chair of the K-4 writing team for the 1989 document, and Angela as a member of the pre-K-2 writing team for the 2000 document" — this is an instant DQ. NCTM is evil, and its so-called standards are a big smelly pile of crap.
                              $endgroup$
                              – Rusty Core
                              1 hour ago












                              $begingroup$
                              @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                              $endgroup$
                              – Joel Reyes Noche
                              57 mins ago





                              $begingroup$
                              @RustyCore, You might want to use more polite language. You say "NCTM is evil" as if this is a fact. I suggest you say something like "I think NCTM is evil," or better yet, something like "I do not like NCTM."
                              $endgroup$
                              – Joel Reyes Noche
                              57 mins ago












                              0












                              $begingroup$

                              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


                              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


                              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


                              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)






                              share|improve this answer








                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.





                              $endgroup$














                              • $begingroup$
                                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                                $endgroup$
                                – guest
                                47 mins ago
















                              0












                              $begingroup$

                              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


                              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


                              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


                              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)






                              share|improve this answer








                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.





                              $endgroup$














                              • $begingroup$
                                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                                $endgroup$
                                – guest
                                47 mins ago














                              0












                              0








                              0





                              $begingroup$

                              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


                              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


                              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


                              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)






                              share|improve this answer








                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.





                              $endgroup$



                              1. When they are first learning multiplication, keep the numbers very small and allow them to do repeated addition. 2*4 and 4*2 are good ones to start with. Do 3*5 before 4*5. (Or a sequence of 1*5, 2*5, 3*5, 4*5, etc.)


                              2. Try to keep things simpler. Not boxes of pencils. But groups of pencils. Boxes of pencils is a bit of a word problem and a conversion problem.


                              3. Teach them the multiplication table via memorization and drill. Don't only approach multiplication in this manner...use concrete counting examples as well. But take a belt and suspenders approach. IOW, don't exclude learning of this kind. Having learned the table, kids are more ready to use it. Also, do not underestimate the joy in memorization and recall. Look how kids are with state capitals. Or how kids compete in games even simple drill.


                              4. Just persist and prevail. Don't assume they are as smart as you or as experienced. Repeat, repeat, repeat. That is the path to instruction more than "killer explanation". But of course, as in 3, use explanations AS WELL. But don't expect concepts themselves to magically unlock a stuck door. Some people even need to just learn by imitation, practice, and correction. (See coaching in sports and music.)







                              share|improve this answer








                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.








                              share|improve this answer



                              share|improve this answer






                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.








                              answered 1 hour ago









                              guestguest

                              1




                              1




                              New contributor



                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.




                              New contributor




                              guest is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                              Check out our Code of Conduct.
















                              • $begingroup$
                                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                                $endgroup$
                                – guest
                                47 mins ago

















                              • $begingroup$
                                You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                                $endgroup$
                                – Rusty Core
                                1 hour ago










                              • $begingroup$
                                Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                                $endgroup$
                                – guest
                                47 mins ago
















                              $begingroup$
                              You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                              $endgroup$
                              – Rusty Core
                              1 hour ago




                              $begingroup$
                              You might have missed the question, which is: why adding pencils to pencils is ok, but adding pencils to pencil boxes is not? If someone asks you why you cannot add four boxes to five pencils, what do you answer? Do you say that there are no boxes, there are groups, which cannot be added to pencils?
                              $endgroup$
                              – Rusty Core
                              1 hour ago












                              $begingroup$
                              Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                              $endgroup$
                              – guest
                              47 mins ago





                              $begingroup$
                              Just say you can't do that because they're different. Don't belabor the explanation. Don't try to achieve victory with magic lightbulb blinking on. THEN shift to a different mode of instruction. You insist on thinking that the key to lock (explanation) is the path to training of new skills. And it isn't.
                              $endgroup$
                              – guest
                              47 mins ago


















                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Educators Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmatheducators.stackexchange.com%2fquestions%2f16941%2fadding-things-to-bunches-of-things-vs-multiplication%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                              Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                              Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її