Optimization models for portfolio optimizationReference request: how to model nonlinear regression?What is the connection of Operations Research and Reinforcement Learning?Recommended books/materials for practical applications of Operations Research in industryHow to avoid having your optimization models rusting?Benchmark problems for scenario-based stochastic optimizationCombinatorial Optimization: Metaheuristics, CP, IP — “versus” or “and”?Usages of logarithmic mean in optimizationGuidelines for Linear Optimization approaches?As an Operations Research professional, how is your time divided when working on an optimization project?maximum eigenvalue across subsamples
Strong Password Detection in Python
Is it better in terms of durability to remove card+battery or to connect to charger/computer via USB-C?
What happens to unproductive professors?
Can you cast the Shape Water spell without an existing obvious pool of water?
Is it possible to complete a PhD in CS in 3 years?
What could cause the sea level to massively decrease?
What kind of Chinook helicopter/airplane hybrid is this?
Can Jimmy hang on his rope?
Conditions for Roots of a quadratic equation at infinity
What are the effects of abstaining from eating a certain flavor?
Optimization models for portfolio optimization
Party going through airport security at separate times?
Publishing papers seem natural to many, while I find it really hard to think novel stuff to pursue till publication. How to cope up with this?
Did depressed people far more accurately estimate how many monsters they killed in a video game?
Deck of Cards with Shuffle and Sort functionality
What would +1/+2/+3 items be called in game?
What was the profession 芸者 (female entertainer) called in Germany?
Write a function
Why was such an unrevealing title originally chosen and then changed for some International markets?
Is it possible for a character at any level to cast all 44 Cantrips in one week without Magic Items?
Did right-wing politician Franz Josef Strauss ever explain why he gave a 3 billion loan to East Germany in 1983?
My previous employer committed a severe violation of the law and is also being sued by me. How do I explain the situation to future employers?
Why does Trump want a citizenship question on the census?
Password Hashing Security Using Scrypt & Argon2
Optimization models for portfolio optimization
Reference request: how to model nonlinear regression?What is the connection of Operations Research and Reinforcement Learning?Recommended books/materials for practical applications of Operations Research in industryHow to avoid having your optimization models rusting?Benchmark problems for scenario-based stochastic optimizationCombinatorial Optimization: Metaheuristics, CP, IP — “versus” or “and”?Usages of logarithmic mean in optimizationGuidelines for Linear Optimization approaches?As an Operations Research professional, how is your time divided when working on an optimization project?maximum eigenvalue across subsamples
$begingroup$
What are the mainstream models for portfolio optimization? We have Markowitz mean-variance model and CVaR-based models (e.g., max return subject to a CVaR constraint). What else is out there in terms of risk measures or formulations?
optimization combinatorial-optimization
New contributor
$endgroup$
add a comment |
$begingroup$
What are the mainstream models for portfolio optimization? We have Markowitz mean-variance model and CVaR-based models (e.g., max return subject to a CVaR constraint). What else is out there in terms of risk measures or formulations?
optimization combinatorial-optimization
New contributor
$endgroup$
add a comment |
$begingroup$
What are the mainstream models for portfolio optimization? We have Markowitz mean-variance model and CVaR-based models (e.g., max return subject to a CVaR constraint). What else is out there in terms of risk measures or formulations?
optimization combinatorial-optimization
New contributor
$endgroup$
What are the mainstream models for portfolio optimization? We have Markowitz mean-variance model and CVaR-based models (e.g., max return subject to a CVaR constraint). What else is out there in terms of risk measures or formulations?
optimization combinatorial-optimization
optimization combinatorial-optimization
New contributor
New contributor
edited 8 hours ago
EhsanK
1,1292 silver badges22 bronze badges
1,1292 silver badges22 bronze badges
New contributor
asked 8 hours ago
Daniel DuqueDaniel Duque
665 bronze badges
665 bronze badges
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Here's what is not really mainstream now, but should be. The mean and especially the covariance matrix of returns is not known. Treating estimates of then as though they are known with certainty can lead to very suboptimal results.
Just to start vectoring yourself in the right direction, you can start by looking at
MEAN–VARIANCE PORTFOLIO OPTIMIZATION WHEN MEANS AND COVARIANCES ARE UNKNOWN, TZE LEUNG LAI, HAIPENG XING, and ZEHAO CHEN, Annals of Statistics, 2011, Vol. 5, No. 2A, 798–823.
Improving Portfolios Global Performance with Robust Covariance Matrix Estimation:Application to the Maximum Variety Portfolio, Emmanuelle Jay, Eugenie Terreaux, Jean-Philippe Ovarlez, and Frederic Pascal.
You may also find of interest methods to identify financial risk factors using large data sets.
Identifying Financial Risk Factors with a Low-Rank Sparse Decomposition, Lisa Goldberg and Alex Shkolnik. This decomposes covariance as a sum of a rank-one factor component and a diagonal security specific return component
Here is a semi-classic paper advising you NOT to use the sample covariance matrix for portfolio optimization. "Shrinking" it toward a better conditioned matrix. even though producing a biased estimator of the covariance matrix, can improve the results of portfolio optimization (note that the condition number of the sample covariance matrix is a very biased estimator of the condition number of the true covariance matrix, and is infinite when the number of vector data points is less than the number of variables).
Honey, I Shrunk the Sample Covariance Matrix, Olivier Ledoit and MichaelWolf, The Journal of Portfolio Management Summer 2004, 30 (4) 110-119 (link is to free version of the paper)
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "700"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Daniel Duque is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2for.stackexchange.com%2fquestions%2f911%2foptimization-models-for-portfolio-optimization%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's what is not really mainstream now, but should be. The mean and especially the covariance matrix of returns is not known. Treating estimates of then as though they are known with certainty can lead to very suboptimal results.
Just to start vectoring yourself in the right direction, you can start by looking at
MEAN–VARIANCE PORTFOLIO OPTIMIZATION WHEN MEANS AND COVARIANCES ARE UNKNOWN, TZE LEUNG LAI, HAIPENG XING, and ZEHAO CHEN, Annals of Statistics, 2011, Vol. 5, No. 2A, 798–823.
Improving Portfolios Global Performance with Robust Covariance Matrix Estimation:Application to the Maximum Variety Portfolio, Emmanuelle Jay, Eugenie Terreaux, Jean-Philippe Ovarlez, and Frederic Pascal.
You may also find of interest methods to identify financial risk factors using large data sets.
Identifying Financial Risk Factors with a Low-Rank Sparse Decomposition, Lisa Goldberg and Alex Shkolnik. This decomposes covariance as a sum of a rank-one factor component and a diagonal security specific return component
Here is a semi-classic paper advising you NOT to use the sample covariance matrix for portfolio optimization. "Shrinking" it toward a better conditioned matrix. even though producing a biased estimator of the covariance matrix, can improve the results of portfolio optimization (note that the condition number of the sample covariance matrix is a very biased estimator of the condition number of the true covariance matrix, and is infinite when the number of vector data points is less than the number of variables).
Honey, I Shrunk the Sample Covariance Matrix, Olivier Ledoit and MichaelWolf, The Journal of Portfolio Management Summer 2004, 30 (4) 110-119 (link is to free version of the paper)
$endgroup$
add a comment |
$begingroup$
Here's what is not really mainstream now, but should be. The mean and especially the covariance matrix of returns is not known. Treating estimates of then as though they are known with certainty can lead to very suboptimal results.
Just to start vectoring yourself in the right direction, you can start by looking at
MEAN–VARIANCE PORTFOLIO OPTIMIZATION WHEN MEANS AND COVARIANCES ARE UNKNOWN, TZE LEUNG LAI, HAIPENG XING, and ZEHAO CHEN, Annals of Statistics, 2011, Vol. 5, No. 2A, 798–823.
Improving Portfolios Global Performance with Robust Covariance Matrix Estimation:Application to the Maximum Variety Portfolio, Emmanuelle Jay, Eugenie Terreaux, Jean-Philippe Ovarlez, and Frederic Pascal.
You may also find of interest methods to identify financial risk factors using large data sets.
Identifying Financial Risk Factors with a Low-Rank Sparse Decomposition, Lisa Goldberg and Alex Shkolnik. This decomposes covariance as a sum of a rank-one factor component and a diagonal security specific return component
Here is a semi-classic paper advising you NOT to use the sample covariance matrix for portfolio optimization. "Shrinking" it toward a better conditioned matrix. even though producing a biased estimator of the covariance matrix, can improve the results of portfolio optimization (note that the condition number of the sample covariance matrix is a very biased estimator of the condition number of the true covariance matrix, and is infinite when the number of vector data points is less than the number of variables).
Honey, I Shrunk the Sample Covariance Matrix, Olivier Ledoit and MichaelWolf, The Journal of Portfolio Management Summer 2004, 30 (4) 110-119 (link is to free version of the paper)
$endgroup$
add a comment |
$begingroup$
Here's what is not really mainstream now, but should be. The mean and especially the covariance matrix of returns is not known. Treating estimates of then as though they are known with certainty can lead to very suboptimal results.
Just to start vectoring yourself in the right direction, you can start by looking at
MEAN–VARIANCE PORTFOLIO OPTIMIZATION WHEN MEANS AND COVARIANCES ARE UNKNOWN, TZE LEUNG LAI, HAIPENG XING, and ZEHAO CHEN, Annals of Statistics, 2011, Vol. 5, No. 2A, 798–823.
Improving Portfolios Global Performance with Robust Covariance Matrix Estimation:Application to the Maximum Variety Portfolio, Emmanuelle Jay, Eugenie Terreaux, Jean-Philippe Ovarlez, and Frederic Pascal.
You may also find of interest methods to identify financial risk factors using large data sets.
Identifying Financial Risk Factors with a Low-Rank Sparse Decomposition, Lisa Goldberg and Alex Shkolnik. This decomposes covariance as a sum of a rank-one factor component and a diagonal security specific return component
Here is a semi-classic paper advising you NOT to use the sample covariance matrix for portfolio optimization. "Shrinking" it toward a better conditioned matrix. even though producing a biased estimator of the covariance matrix, can improve the results of portfolio optimization (note that the condition number of the sample covariance matrix is a very biased estimator of the condition number of the true covariance matrix, and is infinite when the number of vector data points is less than the number of variables).
Honey, I Shrunk the Sample Covariance Matrix, Olivier Ledoit and MichaelWolf, The Journal of Portfolio Management Summer 2004, 30 (4) 110-119 (link is to free version of the paper)
$endgroup$
Here's what is not really mainstream now, but should be. The mean and especially the covariance matrix of returns is not known. Treating estimates of then as though they are known with certainty can lead to very suboptimal results.
Just to start vectoring yourself in the right direction, you can start by looking at
MEAN–VARIANCE PORTFOLIO OPTIMIZATION WHEN MEANS AND COVARIANCES ARE UNKNOWN, TZE LEUNG LAI, HAIPENG XING, and ZEHAO CHEN, Annals of Statistics, 2011, Vol. 5, No. 2A, 798–823.
Improving Portfolios Global Performance with Robust Covariance Matrix Estimation:Application to the Maximum Variety Portfolio, Emmanuelle Jay, Eugenie Terreaux, Jean-Philippe Ovarlez, and Frederic Pascal.
You may also find of interest methods to identify financial risk factors using large data sets.
Identifying Financial Risk Factors with a Low-Rank Sparse Decomposition, Lisa Goldberg and Alex Shkolnik. This decomposes covariance as a sum of a rank-one factor component and a diagonal security specific return component
Here is a semi-classic paper advising you NOT to use the sample covariance matrix for portfolio optimization. "Shrinking" it toward a better conditioned matrix. even though producing a biased estimator of the covariance matrix, can improve the results of portfolio optimization (note that the condition number of the sample covariance matrix is a very biased estimator of the condition number of the true covariance matrix, and is infinite when the number of vector data points is less than the number of variables).
Honey, I Shrunk the Sample Covariance Matrix, Olivier Ledoit and MichaelWolf, The Journal of Portfolio Management Summer 2004, 30 (4) 110-119 (link is to free version of the paper)
edited 7 hours ago
answered 7 hours ago
Mark L. StoneMark L. Stone
2,1645 silver badges23 bronze badges
2,1645 silver badges23 bronze badges
add a comment |
add a comment |
Daniel Duque is a new contributor. Be nice, and check out our Code of Conduct.
Daniel Duque is a new contributor. Be nice, and check out our Code of Conduct.
Daniel Duque is a new contributor. Be nice, and check out our Code of Conduct.
Daniel Duque is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Operations Research Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2for.stackexchange.com%2fquestions%2f911%2foptimization-models-for-portfolio-optimization%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown