Commutator subgroup of Heisenberg group.Commutator subgroup problemIs there a nonvirtually abelian group whose commutator subgroup is finite?Subgroup of the quotient group of the commutator G'.Commutator Subgroup is finitely generatedCommutator subgroup is the minimal normal subgroup such that quotient group is abelianIs the commutator subgroup of a commutator subgroup itself?When is a quotient group abelian?Problem on commutator subgroupLet $H$ be the Heisenberg group. Determine the center $Z(H)$ of $H$. Show that the quotient group $H/Z(H)$ is abelian.Proving that a quotient is virtually a nilpotent group
I have accepted an internship offer. Should I inform companies I have applied to that have not gotten back to me yet?
How can I legally visit the United States Minor Outlying Islands in the Pacific?
Crab Nebula short story from 1960s or '70s
Too many spies!
Is this more than a packing puzzle?
do not have power to all my breakers
Will it hurt my career to work as a graphic designer in a startup for beauty and skin care?
What is the English equivalent of 干物女 (dried fish woman)?
Was adding milk to tea started to reduce employee tea break time?
What is this old "lemon-squeezer" shaped pan
What impact would a dragon the size of Asia have on the environment?
Possible isometry groups of open manifolds
Why is the collector feedback bias popular in electret-mic preamp circuits?
Can a pizza stone be fixed after soap has been used to clean it?
(algebraic topology) question about the cellular approximation theorem
Is this a plot hole in the Lost Mine of Phandelver adventure?
How to draw a gif with expanding circles that reveal lines connecting a non-centered point to the expanding circle using Tikz
How to fit a linear model in the Bayesian way in Mathematica?
Does optical correction give a more aesthetic look to the SBI logo?
Why didn't Al Powell investigate the lights at the top of the building?
How did John Lennon tune his guitar
Are lithium batteries allowed in the International Space Station?
Adding a vertical line at the right end of the horizontal line in frac
What is the closed form of the following recursive function?
Commutator subgroup of Heisenberg group.
Commutator subgroup problemIs there a nonvirtually abelian group whose commutator subgroup is finite?Subgroup of the quotient group of the commutator G'.Commutator Subgroup is finitely generatedCommutator subgroup is the minimal normal subgroup such that quotient group is abelianIs the commutator subgroup of a commutator subgroup itself?When is a quotient group abelian?Problem on commutator subgroupLet $H$ be the Heisenberg group. Determine the center $Z(H)$ of $H$. Show that the quotient group $H/Z(H)$ is abelian.Proving that a quotient is virtually a nilpotent group
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
Dears,
Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.
My question is - is it also a commutator subgroup of that group?
The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.
Have a nice day.
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
$endgroup$
add a comment |
$begingroup$
Dears,
Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.
My question is - is it also a commutator subgroup of that group?
The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.
Have a nice day.
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
$endgroup$
add a comment |
$begingroup$
Dears,
Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.
My question is - is it also a commutator subgroup of that group?
The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.
Have a nice day.
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
$endgroup$
Dears,
Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.
My question is - is it also a commutator subgroup of that group?
The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.
Have a nice day.
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group
edited 8 hours ago
Maciej Ficek
asked 9 hours ago
Maciej FicekMaciej Ficek
276 bronze badges
276 bronze badges
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
$endgroup$
add a comment |
$begingroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293033%2fcommutator-subgroup-of-heisenberg-group%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
$endgroup$
add a comment |
$begingroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
$endgroup$
add a comment |
$begingroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
$endgroup$
$$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$
Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign
It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.
edited 6 hours ago
answered 8 hours ago
Gae. S.Gae. S.
6073 silver badges14 bronze badges
6073 silver badges14 bronze badges
add a comment |
add a comment |
$begingroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
$endgroup$
add a comment |
$begingroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
$endgroup$
add a comment |
$begingroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
$endgroup$
Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.
edited 8 hours ago
answered 8 hours ago
José Carlos SantosJosé Carlos Santos
199k25 gold badges158 silver badges276 bronze badges
199k25 gold badges158 silver badges276 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293033%2fcommutator-subgroup-of-heisenberg-group%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown