Commutator subgroup of Heisenberg group.Commutator subgroup problemIs there a nonvirtually abelian group whose commutator subgroup is finite?Subgroup of the quotient group of the commutator G'.Commutator Subgroup is finitely generatedCommutator subgroup is the minimal normal subgroup such that quotient group is abelianIs the commutator subgroup of a commutator subgroup itself?When is a quotient group abelian?Problem on commutator subgroupLet $H$ be the Heisenberg group. Determine the center $Z(H)$ of $H$. Show that the quotient group $H/Z(H)$ is abelian.Proving that a quotient is virtually a nilpotent group

I have accepted an internship offer. Should I inform companies I have applied to that have not gotten back to me yet?

How can I legally visit the United States Minor Outlying Islands in the Pacific?

Crab Nebula short story from 1960s or '70s

Too many spies!

Is this more than a packing puzzle?

do not have power to all my breakers

Will it hurt my career to work as a graphic designer in a startup for beauty and skin care?

What is the English equivalent of 干物女 (dried fish woman)?

Was adding milk to tea started to reduce employee tea break time?

What is this old "lemon-squeezer" shaped pan

What impact would a dragon the size of Asia have on the environment?

Possible isometry groups of open manifolds

Why is the collector feedback bias popular in electret-mic preamp circuits?

Can a pizza stone be fixed after soap has been used to clean it?

(algebraic topology) question about the cellular approximation theorem

Is this a plot hole in the Lost Mine of Phandelver adventure?

How to draw a gif with expanding circles that reveal lines connecting a non-centered point to the expanding circle using Tikz

How to fit a linear model in the Bayesian way in Mathematica?

Does optical correction give a more aesthetic look to the SBI logo?

Why didn't Al Powell investigate the lights at the top of the building?

How did John Lennon tune his guitar

Are lithium batteries allowed in the International Space Station?

Adding a vertical line at the right end of the horizontal line in frac

What is the closed form of the following recursive function?



Commutator subgroup of Heisenberg group.


Commutator subgroup problemIs there a nonvirtually abelian group whose commutator subgroup is finite?Subgroup of the quotient group of the commutator G'.Commutator Subgroup is finitely generatedCommutator subgroup is the minimal normal subgroup such that quotient group is abelianIs the commutator subgroup of a commutator subgroup itself?When is a quotient group abelian?Problem on commutator subgroupLet $H$ be the Heisenberg group. Determine the center $Z(H)$ of $H$. Show that the quotient group $H/Z(H)$ is abelian.Proving that a quotient is virtually a nilpotent group






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


Dears,



Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.



My question is - is it also a commutator subgroup of that group?
The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.



Have a nice day.










share|cite|improve this question











$endgroup$


















    2












    $begingroup$


    Dears,



    Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
    Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.



    My question is - is it also a commutator subgroup of that group?
    The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.



    Have a nice day.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      Dears,



      Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
      Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.



      My question is - is it also a commutator subgroup of that group?
      The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.



      Have a nice day.










      share|cite|improve this question











      $endgroup$




      Dears,



      Let $H$ be Heisenberg group, a group of $3times 3$ matrices with $1$ on the main diagonal, zeros below, and elements of $Bbb R$ above the main diagonal.
      Its center is the subgroup of all matrices with $0$ on the first diagonal above the main diagonal.



      My question is - is it also a commutator subgroup of that group?
      The quotient group $H/Z(H)$ is abelian (this group is nilpotent of class two), so commutator subgroup must be inside the center. I can't imagine other subgroups being CS, but I want someone smarter to let me know.



      Have a nice day.







      abstract-algebra group-theory quotient-group nilpotent-groups heisenberg-group






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 8 hours ago







      Maciej Ficek

















      asked 9 hours ago









      Maciej FicekMaciej Ficek

      276 bronze badges




      276 bronze badges




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          $$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$



          Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign



          It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.






          share|cite|improve this answer











          $endgroup$




















            5












            $begingroup$

            Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.






            share|cite|improve this answer











            $endgroup$















              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293033%2fcommutator-subgroup-of-heisenberg-group%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              $$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$



              Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign



              It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                $$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$



                Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign



                It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  $$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$



                  Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign



                  It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.






                  share|cite|improve this answer











                  $endgroup$



                  $$beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrix^-1=beginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrix$$



                  Therefore beginalignABA^-1B^-1&=beginpmatrix1&x&y\ 0&1&z\ 0&0&1endpmatrixbeginpmatrix1&s&t\ 0&1&u\ 0&0&1endpmatrixbeginpmatrix1&-x&xz-y\ 0&1&-z\ 0&0&1endpmatrixbeginpmatrix1&-s&su-t\ 0&1&-u\ 0&0&1endpmatrix=\&=beginpmatrix1&s+x&t+ux+y\ 0&1&u+z\ 0&0&1endpmatrixbeginpmatrix1&-x-s&ux+xz-y+su-t\ 0&1&-z-u\ 0&0&1endpmatrix=\&=beginpmatrix1&0&t+ux+y+ux+xz-y+su-t-(z+u)(s+x)\ 0&1&0\ 0&0&1endpmatrix=\&=beginpmatrix1&0&ux-zs\ 0&1&0\ 0&0&1endpmatrixendalign



                  It is therefore apparent that commmutators are exactly the elements in the form $beginpmatrix1&0&alpha\0&1&0\ 0&0&1endpmatrix$, which incidentally form a subgroup.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 6 hours ago

























                  answered 8 hours ago









                  Gae. S.Gae. S.

                  6073 silver badges14 bronze badges




                  6073 silver badges14 bronze badges























                      5












                      $begingroup$

                      Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.






                      share|cite|improve this answer











                      $endgroup$

















                        5












                        $begingroup$

                        Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.






                        share|cite|improve this answer











                        $endgroup$















                          5












                          5








                          5





                          $begingroup$

                          Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.






                          share|cite|improve this answer











                          $endgroup$



                          Since$$beginbmatrix0&a&c\0&1&b\0&0&1endbmatrix.beginbmatrix1&d&f\0&1&e\0&0&1endbmatrixbeginbmatrix0&a&c\0&1&b\0&0&1endbmatrix^-1beginbmatrix1&d&f\0&1&e\0&0&1endbmatrix^-1=beginbmatrix0 & 0 & a e-b d \ 0 & 0 & 0 \ 0 & 0 & 0endbmatrix,$$yes, the commutator group is the center.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 8 hours ago

























                          answered 8 hours ago









                          José Carlos SantosJosé Carlos Santos

                          199k25 gold badges158 silver badges276 bronze badges




                          199k25 gold badges158 silver badges276 bronze badges



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3293033%2fcommutator-subgroup-of-heisenberg-group%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                              Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                              Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її