Very tricky nonogram - where to go next?Is there a algorithm to decide that the nonogram puzzle is uniqueA Minesweeper CrosswordA simple nonogramCircuit DiagramAn Amazing NonogramWhere did my uncle go?A fortified nonogramHow many possible starting positions are uniquely solvable for a nonogram puzzle?

Explicit song lyrics checker

Greeting with "Ho"

Methodology: Writing unit tests for another developer

Can i enter UK for 24 hours from a Schengen area holding an Indian passport?

Justifying Affordable Bespoke Spaceships

Did the CIA blow up a Siberian pipeline in 1982?

I just entered the USA without passport control at Atlanta airport

What does it cost to buy a tavern?

Covering index used despite missing column

FD Battery Stations... How Do You Log?

Cut the gold chain

Am I legally required to provide a (GPL licensed) source code even after a project is abandoned?

Too early in the morning to have SODA?

Can the pre-order traversal of two different trees be the same even though they are different?

What are the current battlegrounds for people’s “rights” in the UK?

Is declining an undergraduate award which causes me discomfort appropriate?

Why isn't my calculation that we should be able to see the sun well beyond the observable universe valid?

A word for delight at someone else's failure?

Mathematically modelling RC circuit with a linear input

Draw a symmetric alien head

How did the Vostok ejection seat safely eject an astronaut from a sealed space capsule?

How did Gollum enter Moria?

I found a password with hashcat, but it doesn't work

King or Queen-Which piece is which?



Very tricky nonogram - where to go next?


Is there a algorithm to decide that the nonogram puzzle is uniqueA Minesweeper CrosswordA simple nonogramCircuit DiagramAn Amazing NonogramWhere did my uncle go?A fortified nonogramHow many possible starting positions are uniquely solvable for a nonogram puzzle?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


I've become somewhat addicted to Simon Tatham's "Pattern" (nonogram) puzzles recently. I thought I was becoming fairly adept with them, but this unusually difficult one has me stumped. I've got as far as this by using the usual tricks:



progress



But now I can't figure out how to make any further progress. What am I missing?



How can I make the next step to solve this puzzle?










share|improve this question









$endgroup$


















    1












    $begingroup$


    I've become somewhat addicted to Simon Tatham's "Pattern" (nonogram) puzzles recently. I thought I was becoming fairly adept with them, but this unusually difficult one has me stumped. I've got as far as this by using the usual tricks:



    progress



    But now I can't figure out how to make any further progress. What am I missing?



    How can I make the next step to solve this puzzle?










    share|improve this question









    $endgroup$














      1












      1








      1





      $begingroup$


      I've become somewhat addicted to Simon Tatham's "Pattern" (nonogram) puzzles recently. I thought I was becoming fairly adept with them, but this unusually difficult one has me stumped. I've got as far as this by using the usual tricks:



      progress



      But now I can't figure out how to make any further progress. What am I missing?



      How can I make the next step to solve this puzzle?










      share|improve this question









      $endgroup$




      I've become somewhat addicted to Simon Tatham's "Pattern" (nonogram) puzzles recently. I thought I was becoming fairly adept with them, but this unusually difficult one has me stumped. I've got as far as this by using the usual tricks:



      progress



      But now I can't figure out how to make any further progress. What am I missing?



      How can I make the next step to solve this puzzle?







      grid-deduction nonogram






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 8 hours ago









      Rand al'ThorRand al'Thor

      73.7k15240488




      73.7k15240488




















          5 Answers
          5






          active

          oldest

          votes


















          2












          $begingroup$

          [Edit] Darn, you got it as I was typing this.



          There are the ones I saw immediately that can be filled in (the red letters, the blue ones are the blocks that show that the red ones need to be filled in).




          ![Poorly editted image showing blocks that can be filled in]1







          share|improve this answer









          $endgroup$




















            1












            $begingroup$

            You can use the




            1,5,1 column (number 9), because the bottom row block cannot house the 5, which limits it at the top of the column.




            Then:




            the five block must start in at least row 3 and at most row 5, and this means rows 5,6,7 of column 9 can be filled.







            share|improve this answer











            $endgroup$












            • $begingroup$
              OK, so the 5 must be in the upper block ... but then what? We don't know exactly where that 5 must be.
              $endgroup$
              – Rand al'Thor
              8 hours ago


















            1












            $begingroup$

            Duh, I got it.




            Bottom row: the lone square must be part of the 6-block, but there's not enough space for it to go all the way to the right: it must extend at least two more cells to the left.




            Then




            edge cells are always useful because we can start from there to fill in whole blocks: in this case, the 5 and 3 at the bottom of the fourth and fifth columns.




            I'm guessing the deductions will fall like dominoes from there ...




            new grid after the next deductions







            share|improve this answer









            $endgroup$












            • $begingroup$
              And yep, I've now solved it completely. facepalm
              $endgroup$
              – Rand al'Thor
              8 hours ago











            • $begingroup$
              You can infer even more about the 6. The center column is (7 2), flanked on either side by a 1 in the bottom position. Nothing can be filled in in the bottom row center column, otherwise you'll have an isolated square in the second-to-bottom row that violates (1 4 4). You can fill in two more squares to the left of the partial 6 block you show in the image, white out the bottom row center column and directly to the right of it, and place the 2 of (6 2) in the hole on the bottom right..
              $endgroup$
              – Nuclear Wang
              8 hours ago



















            0












            $begingroup$

            I’m thinking




            Based on your 1 4 4 row (second from bottom), that you have a loner black square on the left side. If you continue that to the right, that should be your second set of 4.







            share|improve this answer









            $endgroup$








            • 2




              $begingroup$
              But why would it continue to the right necessarily? It could equally well continue to the left, as far as I can see.
              $endgroup$
              – Rand al'Thor
              8 hours ago


















            0












            $begingroup$

            At least




            on the bottom row, we know the 4th and 5th cell have to be part of the 6.







            share|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "559"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f85188%2fvery-tricky-nonogram-where-to-go-next%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              5 Answers
              5






              active

              oldest

              votes








              5 Answers
              5






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              [Edit] Darn, you got it as I was typing this.



              There are the ones I saw immediately that can be filled in (the red letters, the blue ones are the blocks that show that the red ones need to be filled in).




              ![Poorly editted image showing blocks that can be filled in]1







              share|improve this answer









              $endgroup$

















                2












                $begingroup$

                [Edit] Darn, you got it as I was typing this.



                There are the ones I saw immediately that can be filled in (the red letters, the blue ones are the blocks that show that the red ones need to be filled in).




                ![Poorly editted image showing blocks that can be filled in]1







                share|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  [Edit] Darn, you got it as I was typing this.



                  There are the ones I saw immediately that can be filled in (the red letters, the blue ones are the blocks that show that the red ones need to be filled in).




                  ![Poorly editted image showing blocks that can be filled in]1







                  share|improve this answer









                  $endgroup$



                  [Edit] Darn, you got it as I was typing this.



                  There are the ones I saw immediately that can be filled in (the red letters, the blue ones are the blocks that show that the red ones need to be filled in).




                  ![Poorly editted image showing blocks that can be filled in]1








                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 8 hours ago









                  TedTed

                  536




                  536























                      1












                      $begingroup$

                      You can use the




                      1,5,1 column (number 9), because the bottom row block cannot house the 5, which limits it at the top of the column.




                      Then:




                      the five block must start in at least row 3 and at most row 5, and this means rows 5,6,7 of column 9 can be filled.







                      share|improve this answer











                      $endgroup$












                      • $begingroup$
                        OK, so the 5 must be in the upper block ... but then what? We don't know exactly where that 5 must be.
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago















                      1












                      $begingroup$

                      You can use the




                      1,5,1 column (number 9), because the bottom row block cannot house the 5, which limits it at the top of the column.




                      Then:




                      the five block must start in at least row 3 and at most row 5, and this means rows 5,6,7 of column 9 can be filled.







                      share|improve this answer











                      $endgroup$












                      • $begingroup$
                        OK, so the 5 must be in the upper block ... but then what? We don't know exactly where that 5 must be.
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago













                      1












                      1








                      1





                      $begingroup$

                      You can use the




                      1,5,1 column (number 9), because the bottom row block cannot house the 5, which limits it at the top of the column.




                      Then:




                      the five block must start in at least row 3 and at most row 5, and this means rows 5,6,7 of column 9 can be filled.







                      share|improve this answer











                      $endgroup$



                      You can use the




                      1,5,1 column (number 9), because the bottom row block cannot house the 5, which limits it at the top of the column.




                      Then:




                      the five block must start in at least row 3 and at most row 5, and this means rows 5,6,7 of column 9 can be filled.








                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited 8 hours ago

























                      answered 8 hours ago









                      JonMark PerryJonMark Perry

                      22.4k643103




                      22.4k643103











                      • $begingroup$
                        OK, so the 5 must be in the upper block ... but then what? We don't know exactly where that 5 must be.
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago
















                      • $begingroup$
                        OK, so the 5 must be in the upper block ... but then what? We don't know exactly where that 5 must be.
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago















                      $begingroup$
                      OK, so the 5 must be in the upper block ... but then what? We don't know exactly where that 5 must be.
                      $endgroup$
                      – Rand al'Thor
                      8 hours ago




                      $begingroup$
                      OK, so the 5 must be in the upper block ... but then what? We don't know exactly where that 5 must be.
                      $endgroup$
                      – Rand al'Thor
                      8 hours ago











                      1












                      $begingroup$

                      Duh, I got it.




                      Bottom row: the lone square must be part of the 6-block, but there's not enough space for it to go all the way to the right: it must extend at least two more cells to the left.




                      Then




                      edge cells are always useful because we can start from there to fill in whole blocks: in this case, the 5 and 3 at the bottom of the fourth and fifth columns.




                      I'm guessing the deductions will fall like dominoes from there ...




                      new grid after the next deductions







                      share|improve this answer









                      $endgroup$












                      • $begingroup$
                        And yep, I've now solved it completely. facepalm
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago











                      • $begingroup$
                        You can infer even more about the 6. The center column is (7 2), flanked on either side by a 1 in the bottom position. Nothing can be filled in in the bottom row center column, otherwise you'll have an isolated square in the second-to-bottom row that violates (1 4 4). You can fill in two more squares to the left of the partial 6 block you show in the image, white out the bottom row center column and directly to the right of it, and place the 2 of (6 2) in the hole on the bottom right..
                        $endgroup$
                        – Nuclear Wang
                        8 hours ago
















                      1












                      $begingroup$

                      Duh, I got it.




                      Bottom row: the lone square must be part of the 6-block, but there's not enough space for it to go all the way to the right: it must extend at least two more cells to the left.




                      Then




                      edge cells are always useful because we can start from there to fill in whole blocks: in this case, the 5 and 3 at the bottom of the fourth and fifth columns.




                      I'm guessing the deductions will fall like dominoes from there ...




                      new grid after the next deductions







                      share|improve this answer









                      $endgroup$












                      • $begingroup$
                        And yep, I've now solved it completely. facepalm
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago











                      • $begingroup$
                        You can infer even more about the 6. The center column is (7 2), flanked on either side by a 1 in the bottom position. Nothing can be filled in in the bottom row center column, otherwise you'll have an isolated square in the second-to-bottom row that violates (1 4 4). You can fill in two more squares to the left of the partial 6 block you show in the image, white out the bottom row center column and directly to the right of it, and place the 2 of (6 2) in the hole on the bottom right..
                        $endgroup$
                        – Nuclear Wang
                        8 hours ago














                      1












                      1








                      1





                      $begingroup$

                      Duh, I got it.




                      Bottom row: the lone square must be part of the 6-block, but there's not enough space for it to go all the way to the right: it must extend at least two more cells to the left.




                      Then




                      edge cells are always useful because we can start from there to fill in whole blocks: in this case, the 5 and 3 at the bottom of the fourth and fifth columns.




                      I'm guessing the deductions will fall like dominoes from there ...




                      new grid after the next deductions







                      share|improve this answer









                      $endgroup$



                      Duh, I got it.




                      Bottom row: the lone square must be part of the 6-block, but there's not enough space for it to go all the way to the right: it must extend at least two more cells to the left.




                      Then




                      edge cells are always useful because we can start from there to fill in whole blocks: in this case, the 5 and 3 at the bottom of the fourth and fifth columns.




                      I'm guessing the deductions will fall like dominoes from there ...




                      new grid after the next deductions








                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered 8 hours ago









                      Rand al'ThorRand al'Thor

                      73.7k15240488




                      73.7k15240488











                      • $begingroup$
                        And yep, I've now solved it completely. facepalm
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago











                      • $begingroup$
                        You can infer even more about the 6. The center column is (7 2), flanked on either side by a 1 in the bottom position. Nothing can be filled in in the bottom row center column, otherwise you'll have an isolated square in the second-to-bottom row that violates (1 4 4). You can fill in two more squares to the left of the partial 6 block you show in the image, white out the bottom row center column and directly to the right of it, and place the 2 of (6 2) in the hole on the bottom right..
                        $endgroup$
                        – Nuclear Wang
                        8 hours ago

















                      • $begingroup$
                        And yep, I've now solved it completely. facepalm
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago











                      • $begingroup$
                        You can infer even more about the 6. The center column is (7 2), flanked on either side by a 1 in the bottom position. Nothing can be filled in in the bottom row center column, otherwise you'll have an isolated square in the second-to-bottom row that violates (1 4 4). You can fill in two more squares to the left of the partial 6 block you show in the image, white out the bottom row center column and directly to the right of it, and place the 2 of (6 2) in the hole on the bottom right..
                        $endgroup$
                        – Nuclear Wang
                        8 hours ago
















                      $begingroup$
                      And yep, I've now solved it completely. facepalm
                      $endgroup$
                      – Rand al'Thor
                      8 hours ago





                      $begingroup$
                      And yep, I've now solved it completely. facepalm
                      $endgroup$
                      – Rand al'Thor
                      8 hours ago













                      $begingroup$
                      You can infer even more about the 6. The center column is (7 2), flanked on either side by a 1 in the bottom position. Nothing can be filled in in the bottom row center column, otherwise you'll have an isolated square in the second-to-bottom row that violates (1 4 4). You can fill in two more squares to the left of the partial 6 block you show in the image, white out the bottom row center column and directly to the right of it, and place the 2 of (6 2) in the hole on the bottom right..
                      $endgroup$
                      – Nuclear Wang
                      8 hours ago





                      $begingroup$
                      You can infer even more about the 6. The center column is (7 2), flanked on either side by a 1 in the bottom position. Nothing can be filled in in the bottom row center column, otherwise you'll have an isolated square in the second-to-bottom row that violates (1 4 4). You can fill in two more squares to the left of the partial 6 block you show in the image, white out the bottom row center column and directly to the right of it, and place the 2 of (6 2) in the hole on the bottom right..
                      $endgroup$
                      – Nuclear Wang
                      8 hours ago












                      0












                      $begingroup$

                      I’m thinking




                      Based on your 1 4 4 row (second from bottom), that you have a loner black square on the left side. If you continue that to the right, that should be your second set of 4.







                      share|improve this answer









                      $endgroup$








                      • 2




                        $begingroup$
                        But why would it continue to the right necessarily? It could equally well continue to the left, as far as I can see.
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago















                      0












                      $begingroup$

                      I’m thinking




                      Based on your 1 4 4 row (second from bottom), that you have a loner black square on the left side. If you continue that to the right, that should be your second set of 4.







                      share|improve this answer









                      $endgroup$








                      • 2




                        $begingroup$
                        But why would it continue to the right necessarily? It could equally well continue to the left, as far as I can see.
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago













                      0












                      0








                      0





                      $begingroup$

                      I’m thinking




                      Based on your 1 4 4 row (second from bottom), that you have a loner black square on the left side. If you continue that to the right, that should be your second set of 4.







                      share|improve this answer









                      $endgroup$



                      I’m thinking




                      Based on your 1 4 4 row (second from bottom), that you have a loner black square on the left side. If you continue that to the right, that should be your second set of 4.








                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered 8 hours ago









                      El-GuestEl-Guest

                      23.6k35496




                      23.6k35496







                      • 2




                        $begingroup$
                        But why would it continue to the right necessarily? It could equally well continue to the left, as far as I can see.
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago












                      • 2




                        $begingroup$
                        But why would it continue to the right necessarily? It could equally well continue to the left, as far as I can see.
                        $endgroup$
                        – Rand al'Thor
                        8 hours ago







                      2




                      2




                      $begingroup$
                      But why would it continue to the right necessarily? It could equally well continue to the left, as far as I can see.
                      $endgroup$
                      – Rand al'Thor
                      8 hours ago




                      $begingroup$
                      But why would it continue to the right necessarily? It could equally well continue to the left, as far as I can see.
                      $endgroup$
                      – Rand al'Thor
                      8 hours ago











                      0












                      $begingroup$

                      At least




                      on the bottom row, we know the 4th and 5th cell have to be part of the 6.







                      share|improve this answer









                      $endgroup$

















                        0












                        $begingroup$

                        At least




                        on the bottom row, we know the 4th and 5th cell have to be part of the 6.







                        share|improve this answer









                        $endgroup$















                          0












                          0








                          0





                          $begingroup$

                          At least




                          on the bottom row, we know the 4th and 5th cell have to be part of the 6.







                          share|improve this answer









                          $endgroup$



                          At least




                          on the bottom row, we know the 4th and 5th cell have to be part of the 6.








                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 8 hours ago









                          jafejafe

                          30.5k487312




                          30.5k487312



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Puzzling Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f85188%2fvery-tricky-nonogram-where-to-go-next%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                              Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                              Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її