Do high-wing aircraft represent more difficult engineering challenges than low-wing aircraft?What are the pros and cons of high-wing compared to low-wing design?Why does the Beech Staggerwing have its low wing ahead of the high wing?What is the cost savings of using electronic motors to taxi?Could a blown wing ever be powerful enough to lift an aircraft at zero forward velocity?Why are high-wing aircraft more stable?Is a biplane without dihedral more stable than a low wing monoplane without dihedral?How do the uninterrupted and interrupted flaps compare?Is there an aerodynamic force that would keep this experimental WW2 era prop from flying as fast as an early jet?How does wing bending relief of an a340 compared to an a330 allow it to carry 30t more fuel in a center section of nearly identical wings?How much extra weight is added by strengthening a piston-prop fighter for carrier landings?

I recently started my machine learning PhD and I have absolutely no idea what I'm doing

Is the seat-belt sign activation when a pilot goes to the lavatory standard procedure?

What metal is most suitable for a ladder submerged in an underground water tank?

c++ conditional uni-directional iterator

Why commonly or frequently used fonts sizes are even numbers like 10px, 12px, 16px, 24px, or 32px?

Slice a list based on an index and items behind it in python

How to continually let my readers know what time it is in my story, in an organic way?

How does Ctrl+c and Ctrl+v work?

Why would company (decision makers) wait for someone to retire, rather than lay them off, when their role is no longer needed?

What dog breeds survive the apocalypse for generations?

Why did Varys remove his rings?

How could it be that 80% of townspeople were farmers during the Edo period in Japan?

What do the "optional" resistor and capacitor do in this circuit?

Do people who work at research institutes consider themselves "academics"?

What is this weird d12 for?

How to check if comma list is empty?

Capital gains on stocks sold to take initial investment off the table

Wireless headphones interfere with Wi-Fi signal on laptop

Do high-wing aircraft represent more difficult engineering challenges than low-wing aircraft?

Should I communicate in my applications that I'm unemployed out of choice rather than because nobody will have me?

Why when I add jam to my tea it stops producing thin "membrane" on top?

Windows 10 lock screen - display my own random images

Understanding Deutch's Algorithm

labelled end points on logic diagram



Do high-wing aircraft represent more difficult engineering challenges than low-wing aircraft?


What are the pros and cons of high-wing compared to low-wing design?Why does the Beech Staggerwing have its low wing ahead of the high wing?What is the cost savings of using electronic motors to taxi?Could a blown wing ever be powerful enough to lift an aircraft at zero forward velocity?Why are high-wing aircraft more stable?Is a biplane without dihedral more stable than a low wing monoplane without dihedral?How do the uninterrupted and interrupted flaps compare?Is there an aerodynamic force that would keep this experimental WW2 era prop from flying as fast as an early jet?How does wing bending relief of an a340 compared to an a330 allow it to carry 30t more fuel in a center section of nearly identical wings?How much extra weight is added by strengthening a piston-prop fighter for carrier landings?













2












$begingroup$


Generally, it's easier to make things strong in compression than in tension.



In a low-wing plane, the weight of the aircraft is on top of the wing; in a high-wing aircraft, it hangs from it.



It seems to me (I'm not an engineer) that the area of attachment in the latter case has to do a lot more difficult work (suspending the rest of the plane by its bolts) than in the former (bearing the weight from below).



And since in a high-wing aircraft all the structure is in tension (everything is hanging from something above it), presumably it's not just the wing and its attachment points that are affected, but most of the fuselage that has to withstand this tension.



Are these intuitions true, and if so, what are their engineering implications?










share|improve this question









$endgroup$
















    2












    $begingroup$


    Generally, it's easier to make things strong in compression than in tension.



    In a low-wing plane, the weight of the aircraft is on top of the wing; in a high-wing aircraft, it hangs from it.



    It seems to me (I'm not an engineer) that the area of attachment in the latter case has to do a lot more difficult work (suspending the rest of the plane by its bolts) than in the former (bearing the weight from below).



    And since in a high-wing aircraft all the structure is in tension (everything is hanging from something above it), presumably it's not just the wing and its attachment points that are affected, but most of the fuselage that has to withstand this tension.



    Are these intuitions true, and if so, what are their engineering implications?










    share|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Generally, it's easier to make things strong in compression than in tension.



      In a low-wing plane, the weight of the aircraft is on top of the wing; in a high-wing aircraft, it hangs from it.



      It seems to me (I'm not an engineer) that the area of attachment in the latter case has to do a lot more difficult work (suspending the rest of the plane by its bolts) than in the former (bearing the weight from below).



      And since in a high-wing aircraft all the structure is in tension (everything is hanging from something above it), presumably it's not just the wing and its attachment points that are affected, but most of the fuselage that has to withstand this tension.



      Are these intuitions true, and if so, what are their engineering implications?










      share|improve this question









      $endgroup$




      Generally, it's easier to make things strong in compression than in tension.



      In a low-wing plane, the weight of the aircraft is on top of the wing; in a high-wing aircraft, it hangs from it.



      It seems to me (I'm not an engineer) that the area of attachment in the latter case has to do a lot more difficult work (suspending the rest of the plane by its bolts) than in the former (bearing the weight from below).



      And since in a high-wing aircraft all the structure is in tension (everything is hanging from something above it), presumably it's not just the wing and its attachment points that are affected, but most of the fuselage that has to withstand this tension.



      Are these intuitions true, and if so, what are their engineering implications?







      aircraft-design wing






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 3 hours ago









      Daniele ProcidaDaniele Procida

      6,4482257




      6,4482257




















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          The intuitions depend on the application. Wood is very strong in compression, steel in tension. And we must also consider G loading forces, which only add to the situation.



          Airplane designers, over the years, have learned to use sound fundamental structural concepts to advance from opposing tension cables (very strong, not aerodynamic) to cantilever design (loaded triangles in both tension and compression), distribution of load (stressed skin), and tubular design (arch strength), as well as improved building materials
          such as aluminum, steel alloys, and titanium.



          Although attachment to a high wing as opposed to resting on a low wing does make sense,
          the greatest loads are on the wings themselves, and the parts of the fuselage bearing the bending force of elevator and rudder.



          So you have a very strong fuselage either resting on or suspended from the wing spars.
          Military transports seem to favor high wings, airliners low wings. No strong evidence for either case. But a lot of bolts will make it strong.






          share|improve this answer









          $endgroup$




















            2












            $begingroup$

            the tensile-versus-compressive stress issues have been worked out to a satisfactory degree many years ago, meaning that the loadpaths for high-versus-low wing aircraft really aren't design differentiators- but there are other issues, as follows.



            Low wings furnish a natural location for a wide-stance main landing gear, making for stable landings and easy ground handling. But high wings are less prone to damage from striking rocks or bushes on the ground.



            In a low wing layout you can position the pilot and copilot seats over the main wing spar so they do not reduce cabin room, whereas a main spar carry-through in a high wing layout might reduce headroom in the cabin. However, a low wing interferes with the pilot's view of the ground whereas a high wing does not.



            These differences- which do not have anything directly to do with stresses in the airframe- affect the pilot's decision-making process with respect to buying and flying a low wing instead of a high wing plane.



            I invite the experts here to add their comments.






            share|improve this answer









            $endgroup$




















              0












              $begingroup$

              For structural weight efficiency, tension wins because stiffness isn't a factor. This means, if structural efficiency is your top priority, a high wing, braced with struts, or for even less weight cables, wins.



              With strut bracing, the major structural attachments are simple pin joints, and the highest stress component, the wing strut, is in tension except during reverse or negative loading where it's in compression, but where the requirement is less. There is moderate compression loading along the spar axis directed to the wing root, and along the upper spar cap at the strut attachment, but nothing like the compression stress in a fully cantilevered structure at the wing root.



              And for best visualization, really take it to the extreme. Look at a paraglider. You can't compress a string. The wing is "high" and everthing is under tension load. And the whole thing weighs maybe 10lbs but can lift 200+, or 20+ times its weight.



              Note that on cantilever high wing airplanes, like a military transport or a Dash 8, the placement of the wing has little structural advantage and there are other issues to favour one or the other, like loading etc.






              share|improve this answer









              $endgroup$












              • $begingroup$
                Cessna Cardinal is high wing with cantilever beam, no struts. Fixed gear and retractable. Pilot sits slightly ahead of the wing for a great view, and there are no struts to block the side view. Very nice plane to fly. Cessna 210 and P210 are also high wing strutless. I know the pins that hold the ends of the wing spar to the fuselage are pretty big. crossroadsfencing.com/airplane/painting%20pics/IMG_0563.JPG
                $endgroup$
                – CrossRoads
                6 mins ago











              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "528"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f64335%2fdo-high-wing-aircraft-represent-more-difficult-engineering-challenges-than-low-w%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              The intuitions depend on the application. Wood is very strong in compression, steel in tension. And we must also consider G loading forces, which only add to the situation.



              Airplane designers, over the years, have learned to use sound fundamental structural concepts to advance from opposing tension cables (very strong, not aerodynamic) to cantilever design (loaded triangles in both tension and compression), distribution of load (stressed skin), and tubular design (arch strength), as well as improved building materials
              such as aluminum, steel alloys, and titanium.



              Although attachment to a high wing as opposed to resting on a low wing does make sense,
              the greatest loads are on the wings themselves, and the parts of the fuselage bearing the bending force of elevator and rudder.



              So you have a very strong fuselage either resting on or suspended from the wing spars.
              Military transports seem to favor high wings, airliners low wings. No strong evidence for either case. But a lot of bolts will make it strong.






              share|improve this answer









              $endgroup$

















                2












                $begingroup$

                The intuitions depend on the application. Wood is very strong in compression, steel in tension. And we must also consider G loading forces, which only add to the situation.



                Airplane designers, over the years, have learned to use sound fundamental structural concepts to advance from opposing tension cables (very strong, not aerodynamic) to cantilever design (loaded triangles in both tension and compression), distribution of load (stressed skin), and tubular design (arch strength), as well as improved building materials
                such as aluminum, steel alloys, and titanium.



                Although attachment to a high wing as opposed to resting on a low wing does make sense,
                the greatest loads are on the wings themselves, and the parts of the fuselage bearing the bending force of elevator and rudder.



                So you have a very strong fuselage either resting on or suspended from the wing spars.
                Military transports seem to favor high wings, airliners low wings. No strong evidence for either case. But a lot of bolts will make it strong.






                share|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  The intuitions depend on the application. Wood is very strong in compression, steel in tension. And we must also consider G loading forces, which only add to the situation.



                  Airplane designers, over the years, have learned to use sound fundamental structural concepts to advance from opposing tension cables (very strong, not aerodynamic) to cantilever design (loaded triangles in both tension and compression), distribution of load (stressed skin), and tubular design (arch strength), as well as improved building materials
                  such as aluminum, steel alloys, and titanium.



                  Although attachment to a high wing as opposed to resting on a low wing does make sense,
                  the greatest loads are on the wings themselves, and the parts of the fuselage bearing the bending force of elevator and rudder.



                  So you have a very strong fuselage either resting on or suspended from the wing spars.
                  Military transports seem to favor high wings, airliners low wings. No strong evidence for either case. But a lot of bolts will make it strong.






                  share|improve this answer









                  $endgroup$



                  The intuitions depend on the application. Wood is very strong in compression, steel in tension. And we must also consider G loading forces, which only add to the situation.



                  Airplane designers, over the years, have learned to use sound fundamental structural concepts to advance from opposing tension cables (very strong, not aerodynamic) to cantilever design (loaded triangles in both tension and compression), distribution of load (stressed skin), and tubular design (arch strength), as well as improved building materials
                  such as aluminum, steel alloys, and titanium.



                  Although attachment to a high wing as opposed to resting on a low wing does make sense,
                  the greatest loads are on the wings themselves, and the parts of the fuselage bearing the bending force of elevator and rudder.



                  So you have a very strong fuselage either resting on or suspended from the wing spars.
                  Military transports seem to favor high wings, airliners low wings. No strong evidence for either case. But a lot of bolts will make it strong.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 1 hour ago









                  Robert DiGiovanniRobert DiGiovanni

                  3,2361316




                  3,2361316





















                      2












                      $begingroup$

                      the tensile-versus-compressive stress issues have been worked out to a satisfactory degree many years ago, meaning that the loadpaths for high-versus-low wing aircraft really aren't design differentiators- but there are other issues, as follows.



                      Low wings furnish a natural location for a wide-stance main landing gear, making for stable landings and easy ground handling. But high wings are less prone to damage from striking rocks or bushes on the ground.



                      In a low wing layout you can position the pilot and copilot seats over the main wing spar so they do not reduce cabin room, whereas a main spar carry-through in a high wing layout might reduce headroom in the cabin. However, a low wing interferes with the pilot's view of the ground whereas a high wing does not.



                      These differences- which do not have anything directly to do with stresses in the airframe- affect the pilot's decision-making process with respect to buying and flying a low wing instead of a high wing plane.



                      I invite the experts here to add their comments.






                      share|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        the tensile-versus-compressive stress issues have been worked out to a satisfactory degree many years ago, meaning that the loadpaths for high-versus-low wing aircraft really aren't design differentiators- but there are other issues, as follows.



                        Low wings furnish a natural location for a wide-stance main landing gear, making for stable landings and easy ground handling. But high wings are less prone to damage from striking rocks or bushes on the ground.



                        In a low wing layout you can position the pilot and copilot seats over the main wing spar so they do not reduce cabin room, whereas a main spar carry-through in a high wing layout might reduce headroom in the cabin. However, a low wing interferes with the pilot's view of the ground whereas a high wing does not.



                        These differences- which do not have anything directly to do with stresses in the airframe- affect the pilot's decision-making process with respect to buying and flying a low wing instead of a high wing plane.



                        I invite the experts here to add their comments.






                        share|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          the tensile-versus-compressive stress issues have been worked out to a satisfactory degree many years ago, meaning that the loadpaths for high-versus-low wing aircraft really aren't design differentiators- but there are other issues, as follows.



                          Low wings furnish a natural location for a wide-stance main landing gear, making for stable landings and easy ground handling. But high wings are less prone to damage from striking rocks or bushes on the ground.



                          In a low wing layout you can position the pilot and copilot seats over the main wing spar so they do not reduce cabin room, whereas a main spar carry-through in a high wing layout might reduce headroom in the cabin. However, a low wing interferes with the pilot's view of the ground whereas a high wing does not.



                          These differences- which do not have anything directly to do with stresses in the airframe- affect the pilot's decision-making process with respect to buying and flying a low wing instead of a high wing plane.



                          I invite the experts here to add their comments.






                          share|improve this answer









                          $endgroup$



                          the tensile-versus-compressive stress issues have been worked out to a satisfactory degree many years ago, meaning that the loadpaths for high-versus-low wing aircraft really aren't design differentiators- but there are other issues, as follows.



                          Low wings furnish a natural location for a wide-stance main landing gear, making for stable landings and easy ground handling. But high wings are less prone to damage from striking rocks or bushes on the ground.



                          In a low wing layout you can position the pilot and copilot seats over the main wing spar so they do not reduce cabin room, whereas a main spar carry-through in a high wing layout might reduce headroom in the cabin. However, a low wing interferes with the pilot's view of the ground whereas a high wing does not.



                          These differences- which do not have anything directly to do with stresses in the airframe- affect the pilot's decision-making process with respect to buying and flying a low wing instead of a high wing plane.



                          I invite the experts here to add their comments.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 1 hour ago









                          niels nielsenniels nielsen

                          2,6491515




                          2,6491515





















                              0












                              $begingroup$

                              For structural weight efficiency, tension wins because stiffness isn't a factor. This means, if structural efficiency is your top priority, a high wing, braced with struts, or for even less weight cables, wins.



                              With strut bracing, the major structural attachments are simple pin joints, and the highest stress component, the wing strut, is in tension except during reverse or negative loading where it's in compression, but where the requirement is less. There is moderate compression loading along the spar axis directed to the wing root, and along the upper spar cap at the strut attachment, but nothing like the compression stress in a fully cantilevered structure at the wing root.



                              And for best visualization, really take it to the extreme. Look at a paraglider. You can't compress a string. The wing is "high" and everthing is under tension load. And the whole thing weighs maybe 10lbs but can lift 200+, or 20+ times its weight.



                              Note that on cantilever high wing airplanes, like a military transport or a Dash 8, the placement of the wing has little structural advantage and there are other issues to favour one or the other, like loading etc.






                              share|improve this answer









                              $endgroup$












                              • $begingroup$
                                Cessna Cardinal is high wing with cantilever beam, no struts. Fixed gear and retractable. Pilot sits slightly ahead of the wing for a great view, and there are no struts to block the side view. Very nice plane to fly. Cessna 210 and P210 are also high wing strutless. I know the pins that hold the ends of the wing spar to the fuselage are pretty big. crossroadsfencing.com/airplane/painting%20pics/IMG_0563.JPG
                                $endgroup$
                                – CrossRoads
                                6 mins ago















                              0












                              $begingroup$

                              For structural weight efficiency, tension wins because stiffness isn't a factor. This means, if structural efficiency is your top priority, a high wing, braced with struts, or for even less weight cables, wins.



                              With strut bracing, the major structural attachments are simple pin joints, and the highest stress component, the wing strut, is in tension except during reverse or negative loading where it's in compression, but where the requirement is less. There is moderate compression loading along the spar axis directed to the wing root, and along the upper spar cap at the strut attachment, but nothing like the compression stress in a fully cantilevered structure at the wing root.



                              And for best visualization, really take it to the extreme. Look at a paraglider. You can't compress a string. The wing is "high" and everthing is under tension load. And the whole thing weighs maybe 10lbs but can lift 200+, or 20+ times its weight.



                              Note that on cantilever high wing airplanes, like a military transport or a Dash 8, the placement of the wing has little structural advantage and there are other issues to favour one or the other, like loading etc.






                              share|improve this answer









                              $endgroup$












                              • $begingroup$
                                Cessna Cardinal is high wing with cantilever beam, no struts. Fixed gear and retractable. Pilot sits slightly ahead of the wing for a great view, and there are no struts to block the side view. Very nice plane to fly. Cessna 210 and P210 are also high wing strutless. I know the pins that hold the ends of the wing spar to the fuselage are pretty big. crossroadsfencing.com/airplane/painting%20pics/IMG_0563.JPG
                                $endgroup$
                                – CrossRoads
                                6 mins ago













                              0












                              0








                              0





                              $begingroup$

                              For structural weight efficiency, tension wins because stiffness isn't a factor. This means, if structural efficiency is your top priority, a high wing, braced with struts, or for even less weight cables, wins.



                              With strut bracing, the major structural attachments are simple pin joints, and the highest stress component, the wing strut, is in tension except during reverse or negative loading where it's in compression, but where the requirement is less. There is moderate compression loading along the spar axis directed to the wing root, and along the upper spar cap at the strut attachment, but nothing like the compression stress in a fully cantilevered structure at the wing root.



                              And for best visualization, really take it to the extreme. Look at a paraglider. You can't compress a string. The wing is "high" and everthing is under tension load. And the whole thing weighs maybe 10lbs but can lift 200+, or 20+ times its weight.



                              Note that on cantilever high wing airplanes, like a military transport or a Dash 8, the placement of the wing has little structural advantage and there are other issues to favour one or the other, like loading etc.






                              share|improve this answer









                              $endgroup$



                              For structural weight efficiency, tension wins because stiffness isn't a factor. This means, if structural efficiency is your top priority, a high wing, braced with struts, or for even less weight cables, wins.



                              With strut bracing, the major structural attachments are simple pin joints, and the highest stress component, the wing strut, is in tension except during reverse or negative loading where it's in compression, but where the requirement is less. There is moderate compression loading along the spar axis directed to the wing root, and along the upper spar cap at the strut attachment, but nothing like the compression stress in a fully cantilevered structure at the wing root.



                              And for best visualization, really take it to the extreme. Look at a paraglider. You can't compress a string. The wing is "high" and everthing is under tension load. And the whole thing weighs maybe 10lbs but can lift 200+, or 20+ times its weight.



                              Note that on cantilever high wing airplanes, like a military transport or a Dash 8, the placement of the wing has little structural advantage and there are other issues to favour one or the other, like loading etc.







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered 26 mins ago









                              John KJohn K

                              28.4k14488




                              28.4k14488











                              • $begingroup$
                                Cessna Cardinal is high wing with cantilever beam, no struts. Fixed gear and retractable. Pilot sits slightly ahead of the wing for a great view, and there are no struts to block the side view. Very nice plane to fly. Cessna 210 and P210 are also high wing strutless. I know the pins that hold the ends of the wing spar to the fuselage are pretty big. crossroadsfencing.com/airplane/painting%20pics/IMG_0563.JPG
                                $endgroup$
                                – CrossRoads
                                6 mins ago
















                              • $begingroup$
                                Cessna Cardinal is high wing with cantilever beam, no struts. Fixed gear and retractable. Pilot sits slightly ahead of the wing for a great view, and there are no struts to block the side view. Very nice plane to fly. Cessna 210 and P210 are also high wing strutless. I know the pins that hold the ends of the wing spar to the fuselage are pretty big. crossroadsfencing.com/airplane/painting%20pics/IMG_0563.JPG
                                $endgroup$
                                – CrossRoads
                                6 mins ago















                              $begingroup$
                              Cessna Cardinal is high wing with cantilever beam, no struts. Fixed gear and retractable. Pilot sits slightly ahead of the wing for a great view, and there are no struts to block the side view. Very nice plane to fly. Cessna 210 and P210 are also high wing strutless. I know the pins that hold the ends of the wing spar to the fuselage are pretty big. crossroadsfencing.com/airplane/painting%20pics/IMG_0563.JPG
                              $endgroup$
                              – CrossRoads
                              6 mins ago




                              $begingroup$
                              Cessna Cardinal is high wing with cantilever beam, no struts. Fixed gear and retractable. Pilot sits slightly ahead of the wing for a great view, and there are no struts to block the side view. Very nice plane to fly. Cessna 210 and P210 are also high wing strutless. I know the pins that hold the ends of the wing spar to the fuselage are pretty big. crossroadsfencing.com/airplane/painting%20pics/IMG_0563.JPG
                              $endgroup$
                              – CrossRoads
                              6 mins ago

















                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Aviation Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f64335%2fdo-high-wing-aircraft-represent-more-difficult-engineering-challenges-than-low-w%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                              Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                              Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її