What is the purpose of the constant in the probability density function The 2019 Stack Overflow Developer Survey Results Are InConfusion between probability distribution function and probability density functionProbability density function vs. probability mass functionBound 1D gaussian domain in the interval $[-3sigma, 3sigma]$ so it still is a probability density functionCan a probability density function be used directly as probability function?Probability density of a function of a random variableis this function increasing or decreasing on what intervals?Homework: questions about probability distribution functions and probability density functionGaussian function constantDeriving the Covariance of Multivariate Gaussianprobability density function of a function of a random variable?

Pristine Bit Checking

Why is Grand Jury testimony secret?

Access elements in std::string where positon of string is greater than its size

Deadlock Graph and Interpretation, solution to avoid

Limit the amount of RAM Mathematica may access?

Why is it "Tumoren" and not "Tumore"?

What does "sndry explns" mean in one of the Hitchhiker's guide books?

How long do I have to send payment?

How was Skylab's orbit inclination chosen?

How to reverse every other sublist of a list?

Monty Hall variation

How are circuits which use complex ICs normally simulated?

What is the use of option -o in the useradd command?

Are USB sockets on wall outlets live all the time, even when the switch is off?

How to make payment on the internet without leaving a money trail?

What does "rabbited" mean/imply in this sentence?

"Riffle" two strings

What could be the right powersource for 15 seconds lifespan disposable giant chainsaw?

Could JWST stay at L2 "forever"?

It's possible to achieve negative score?

Realistic Alternatives to Dust: What Else Could Feed a Plankton Bloom?

Is this food a bread or a loaf?

What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?

Does duplicating a spell with Wish count as casting that spell?



What is the purpose of the constant in the probability density function



The 2019 Stack Overflow Developer Survey Results Are InConfusion between probability distribution function and probability density functionProbability density function vs. probability mass functionBound 1D gaussian domain in the interval $[-3sigma, 3sigma]$ so it still is a probability density functionCan a probability density function be used directly as probability function?Probability density of a function of a random variableis this function increasing or decreasing on what intervals?Homework: questions about probability distribution functions and probability density functionGaussian function constantDeriving the Covariance of Multivariate Gaussianprobability density function of a function of a random variable?










1












$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    1 hour ago
















1












$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    1 hour ago














1












1








1





$begingroup$


I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?










share|cite|improve this question









$endgroup$




I have been studying the probability density function...



$$frac1sigma sqrt2 pie^frac(-(x - mu ))^22sigma ^2$$



For now I remove the constant, and using the following proof, I prove that...



$$int_-infty^inftye^frac-x^22 = sqrt2 pi $$



The way I interpret this is that the area under the gaussian distribution is $sqrt2 pi $. But I am still having a hard time figuring out what the constant is doing. It seems to divide by the area itself and by $sigma$ as well. Why is this done?







probability statistics probability-distributions gaussian-integral






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 1 hour ago









BolboaBolboa

398516




398516







  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    1 hour ago













  • 1




    $begingroup$
    so the integral of the probability density function over the entire space is equal to one
    $endgroup$
    – J. W. Tanner
    1 hour ago








1




1




$begingroup$
so the integral of the probability density function over the entire space is equal to one
$endgroup$
– J. W. Tanner
1 hour ago





$begingroup$
so the integral of the probability density function over the entire space is equal to one
$endgroup$
– J. W. Tanner
1 hour ago











2 Answers
2






active

oldest

votes


















2












$begingroup$

If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    1 hour ago



















2












$begingroup$

It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181774%2fwhat-is-the-purpose-of-the-constant-in-the-probability-density-function%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      1 hour ago
















    2












    $begingroup$

    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      1 hour ago














    2












    2








    2





    $begingroup$

    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.






    share|cite|improve this answer









    $endgroup$



    If you consider every possible outcome of some event you should expect the probability of it happening to be $1$, not $sqrt2pi$ so the constant scales the distribution to conform with the normal convention of ascribing a probability between zero and one.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 1 hour ago









    CyclotomicFieldCyclotomicField

    2,4681314




    2,4681314







    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      1 hour ago













    • 1




      $begingroup$
      (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
      $endgroup$
      – John Doe
      1 hour ago








    1




    1




    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    1 hour ago





    $begingroup$
    (In case its not clear, which it probably is) More precisely, you want the sum of the probabilities of all possible events to equal $1$, and since an integral represents a sum over such continuous variables, that's what this is.
    $endgroup$
    – John Doe
    1 hour ago












    2












    $begingroup$

    It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)






        share|cite|improve this answer









        $endgroup$



        It is doing that, but observe that you are also stretching in the horizontal direction by the same factor (in the exponential). Say if $sigma>1$ you are decreasing your area by a factor $sigma$ but you are increasing it by the same factor because you replace $x$ by $x/sigma$ (the shift does not change the area of course)







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        GReyesGReyes

        2,39815




        2,39815



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181774%2fwhat-is-the-purpose-of-the-constant-in-the-probability-density-function%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

            Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

            Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її