Upper Bound for a SumUpper bound for the absolute value of an inner productIs this an upper bound or a lower bound.How to prove sum of squares upper boundUpper bound of a sumAn upper-bound problem of sum of positive numbersHow can I find the upper bound of $E(XYZ)$?Finding an Upper Bound on This InequalityShowing $ left(fracaa + 2bright)^2 + left(fracbb + 2cright)^2 + left(fraccc + 2aright)^2 geq 1/3 $An upper bound on the logarithm of factorialUpper bound on discrepancy of two sums

Does a humanoid possessed by a ghost register as undead to a paladin's Divine Sense?

A Checkmate of Dubious Legality

How to call made-up data?

Why did the US Airways Flight 1549 passengers stay on the wings?

Is unspent vacation time a good argument in pay negotiations?

What are the limitations of the Hendersson-Hasselbalch equation?

How can I perform a deterministic physics simulation?

Is there a command-line tool for converting html files to pdf?

Broken bottom bracket?

Why is it to say 'paucis post diebus'?

What could prevent players from leaving an island?

How to design an effective polearm-bow hybrid?

How to win against ants

Plotting Autoregressive Functions / Linear Difference Equations

“The Fourier transform cannot measure two phases at the same frequency.” Why not?

The warlock of firetop mountain, what's the deal with reference 192?

Upper Bound for a Sum

Why are there yellow dot stickers on the front doors of businesses in Russia?

Variable doesn't parse as string

Generate random number in Unity without class ambiguity

Why do my fried eggs start browning very fast?

How do I show and not tell a backstory?

Is an "are" omitted in this sentence

Make lens aperture in Tikz



Upper Bound for a Sum


Upper bound for the absolute value of an inner productIs this an upper bound or a lower bound.How to prove sum of squares upper boundUpper bound of a sumAn upper-bound problem of sum of positive numbersHow can I find the upper bound of $E(XYZ)$?Finding an Upper Bound on This InequalityShowing $ left(fracaa + 2bright)^2 + left(fracbb + 2cright)^2 + left(fraccc + 2aright)^2 geq 1/3 $An upper bound on the logarithm of factorialUpper bound on discrepancy of two sums






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








5












$begingroup$


Can you help me prove the following inequality:
$$
(sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
$$

where $a's,b's,c's in mathrmR$



I tried to use Cauchy's inequality to prove this but got stuck.










share|cite|improve this question











$endgroup$




















    5












    $begingroup$


    Can you help me prove the following inequality:
    $$
    (sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
    $$

    where $a's,b's,c's in mathrmR$



    I tried to use Cauchy's inequality to prove this but got stuck.










    share|cite|improve this question











    $endgroup$
















      5












      5








      5


      1



      $begingroup$


      Can you help me prove the following inequality:
      $$
      (sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
      $$

      where $a's,b's,c's in mathrmR$



      I tried to use Cauchy's inequality to prove this but got stuck.










      share|cite|improve this question











      $endgroup$




      Can you help me prove the following inequality:
      $$
      (sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
      $$

      where $a's,b's,c's in mathrmR$



      I tried to use Cauchy's inequality to prove this but got stuck.







      inequality cauchy-schwarz-inequality holder-inequality karamata-inequality






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 6 hours ago









      Michael Rozenberg

      123k20 gold badges105 silver badges210 bronze badges




      123k20 gold badges105 silver badges210 bronze badges










      asked 8 hours ago









      A Slow LearnerA Slow Learner

      5324 silver badges14 bronze badges




      5324 silver badges14 bronze badges























          5 Answers
          5






          active

          oldest

          votes


















          7












          $begingroup$

          For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






          share|cite|improve this answer









          $endgroup$










          • 2




            $begingroup$
            fantastic............................................
            $endgroup$
            – Guy Fsone
            7 hours ago


















          0












          $begingroup$

          You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
          $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



          So, the inequality should also work over $mathbbC$.






          share|cite|improve this answer









          $endgroup$






















            0












            $begingroup$

            $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



            The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






            share|cite|improve this answer









            $endgroup$






















              0












              $begingroup$

              I'd like to add one more version.



              First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
              Without loss of generality, I will consider everything positive from now on.



              Now let's prove $2$ lemmas.
              Lemma L1
              $$
              sum_k=1^n x_k^2 y_k^2
              leq
              left(sum_k=1^n x_k y_kright)^2,
              $$

              obvious, since sum on the right contains everything on the left plus something more.



              Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
              $$
              left(vecx cdot vecyright)^2 =
              left(sum_k=1^n x_k y_kright)^2
              ;quad
              left(vecx cdot vecxright) left(vecy cdot vecyright) =
              left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
              $$

              But we know that
              $$
              left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
              = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
              $$

              where $phi$ is an angle between $vecx$ and $vecy$.
              Since $cos^2(phi) leq 1$ we can state
              $$
              left(sum_k=1^n x_k y_kright)^2 leq
              left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
              $$



              Now we are equipped to do the proof
              $$
              left(sum_k=1^n a_k b_k c_kright)^2
              stackreltextL2leq
              left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
              stackreltextL1leq
              left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
              stackreltextL2leq
              left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
              $$

              QED






              share|cite|improve this answer









              $endgroup$






















                0












                $begingroup$

                Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                Now, let $a_kb_kc_k=x_k.$



                Thus, by Holder
                $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                Now, let $f(x)=x^frac23.$



                Thus, $f$ is a concave function.



                Also, let $x_1geq x_2geq...geq x_n.$



                Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                share|cite|improve this answer









                $endgroup$

















                  Your Answer








                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "69"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader:
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  ,
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );













                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3314387%2fupper-bound-for-a-sum%23new-answer', 'question_page');

                  );

                  Post as a guest















                  Required, but never shown

























                  5 Answers
                  5






                  active

                  oldest

                  votes








                  5 Answers
                  5






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  7












                  $begingroup$

                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






                  share|cite|improve this answer









                  $endgroup$










                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    7 hours ago















                  7












                  $begingroup$

                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






                  share|cite|improve this answer









                  $endgroup$










                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    7 hours ago













                  7












                  7








                  7





                  $begingroup$

                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.






                  share|cite|improve this answer









                  $endgroup$



                  For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 8 hours ago









                  KeenKeen

                  6132 silver badges11 bronze badges




                  6132 silver badges11 bronze badges










                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    7 hours ago












                  • 2




                    $begingroup$
                    fantastic............................................
                    $endgroup$
                    – Guy Fsone
                    7 hours ago







                  2




                  2




                  $begingroup$
                  fantastic............................................
                  $endgroup$
                  – Guy Fsone
                  7 hours ago




                  $begingroup$
                  fantastic............................................
                  $endgroup$
                  – Guy Fsone
                  7 hours ago













                  0












                  $begingroup$

                  You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                  $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                  So, the inequality should also work over $mathbbC$.






                  share|cite|improve this answer









                  $endgroup$



















                    0












                    $begingroup$

                    You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                    $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                    So, the inequality should also work over $mathbbC$.






                    share|cite|improve this answer









                    $endgroup$

















                      0












                      0








                      0





                      $begingroup$

                      You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                      $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                      So, the inequality should also work over $mathbbC$.






                      share|cite|improve this answer









                      $endgroup$



                      You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
                      $$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$



                      So, the inequality should also work over $mathbbC$.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 7 hours ago









                      D.B.D.B.

                      2,0792 silver badges10 bronze badges




                      2,0792 silver badges10 bronze badges
























                          0












                          $begingroup$

                          $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                          The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






                          share|cite|improve this answer









                          $endgroup$



















                            0












                            $begingroup$

                            $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                            The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






                            share|cite|improve this answer









                            $endgroup$

















                              0












                              0








                              0





                              $begingroup$

                              $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                              The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.






                              share|cite|improve this answer









                              $endgroup$



                              $(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.



                              The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 7 hours ago









                              herb steinbergherb steinberg

                              4,5042 gold badges3 silver badges12 bronze badges




                              4,5042 gold badges3 silver badges12 bronze badges
























                                  0












                                  $begingroup$

                                  I'd like to add one more version.



                                  First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                  Without loss of generality, I will consider everything positive from now on.



                                  Now let's prove $2$ lemmas.
                                  Lemma L1
                                  $$
                                  sum_k=1^n x_k^2 y_k^2
                                  leq
                                  left(sum_k=1^n x_k y_kright)^2,
                                  $$

                                  obvious, since sum on the right contains everything on the left plus something more.



                                  Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                  $$
                                  left(vecx cdot vecyright)^2 =
                                  left(sum_k=1^n x_k y_kright)^2
                                  ;quad
                                  left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                  left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                  $$

                                  But we know that
                                  $$
                                  left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                  = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                  $$

                                  where $phi$ is an angle between $vecx$ and $vecy$.
                                  Since $cos^2(phi) leq 1$ we can state
                                  $$
                                  left(sum_k=1^n x_k y_kright)^2 leq
                                  left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                  $$



                                  Now we are equipped to do the proof
                                  $$
                                  left(sum_k=1^n a_k b_k c_kright)^2
                                  stackreltextL2leq
                                  left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                  stackreltextL1leq
                                  left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                  stackreltextL2leq
                                  left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                  $$

                                  QED






                                  share|cite|improve this answer









                                  $endgroup$



















                                    0












                                    $begingroup$

                                    I'd like to add one more version.



                                    First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                    Without loss of generality, I will consider everything positive from now on.



                                    Now let's prove $2$ lemmas.
                                    Lemma L1
                                    $$
                                    sum_k=1^n x_k^2 y_k^2
                                    leq
                                    left(sum_k=1^n x_k y_kright)^2,
                                    $$

                                    obvious, since sum on the right contains everything on the left plus something more.



                                    Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                    $$
                                    left(vecx cdot vecyright)^2 =
                                    left(sum_k=1^n x_k y_kright)^2
                                    ;quad
                                    left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                    left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                    $$

                                    But we know that
                                    $$
                                    left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                    = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                    $$

                                    where $phi$ is an angle between $vecx$ and $vecy$.
                                    Since $cos^2(phi) leq 1$ we can state
                                    $$
                                    left(sum_k=1^n x_k y_kright)^2 leq
                                    left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                    $$



                                    Now we are equipped to do the proof
                                    $$
                                    left(sum_k=1^n a_k b_k c_kright)^2
                                    stackreltextL2leq
                                    left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                    stackreltextL1leq
                                    left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                    stackreltextL2leq
                                    left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                    $$

                                    QED






                                    share|cite|improve this answer









                                    $endgroup$

















                                      0












                                      0








                                      0





                                      $begingroup$

                                      I'd like to add one more version.



                                      First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                      Without loss of generality, I will consider everything positive from now on.



                                      Now let's prove $2$ lemmas.
                                      Lemma L1
                                      $$
                                      sum_k=1^n x_k^2 y_k^2
                                      leq
                                      left(sum_k=1^n x_k y_kright)^2,
                                      $$

                                      obvious, since sum on the right contains everything on the left plus something more.



                                      Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                      $$
                                      left(vecx cdot vecyright)^2 =
                                      left(sum_k=1^n x_k y_kright)^2
                                      ;quad
                                      left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$

                                      But we know that
                                      $$
                                      left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                      = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                      $$

                                      where $phi$ is an angle between $vecx$ and $vecy$.
                                      Since $cos^2(phi) leq 1$ we can state
                                      $$
                                      left(sum_k=1^n x_k y_kright)^2 leq
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$



                                      Now we are equipped to do the proof
                                      $$
                                      left(sum_k=1^n a_k b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                      stackreltextL1leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                      $$

                                      QED






                                      share|cite|improve this answer









                                      $endgroup$



                                      I'd like to add one more version.



                                      First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
                                      Without loss of generality, I will consider everything positive from now on.



                                      Now let's prove $2$ lemmas.
                                      Lemma L1
                                      $$
                                      sum_k=1^n x_k^2 y_k^2
                                      leq
                                      left(sum_k=1^n x_k y_kright)^2,
                                      $$

                                      obvious, since sum on the right contains everything on the left plus something more.



                                      Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
                                      $$
                                      left(vecx cdot vecyright)^2 =
                                      left(sum_k=1^n x_k y_kright)^2
                                      ;quad
                                      left(vecx cdot vecxright) left(vecy cdot vecyright) =
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$

                                      But we know that
                                      $$
                                      left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
                                      = left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
                                      $$

                                      where $phi$ is an angle between $vecx$ and $vecy$.
                                      Since $cos^2(phi) leq 1$ we can state
                                      $$
                                      left(sum_k=1^n x_k y_kright)^2 leq
                                      left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
                                      $$



                                      Now we are equipped to do the proof
                                      $$
                                      left(sum_k=1^n a_k b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
                                      stackreltextL1leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
                                      stackreltextL2leq
                                      left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
                                      $$

                                      QED







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 7 hours ago









                                      guestguest

                                      3261 silver badge3 bronze badges




                                      3261 silver badge3 bronze badges
























                                          0












                                          $begingroup$

                                          Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                          Now, let $a_kb_kc_k=x_k.$



                                          Thus, by Holder
                                          $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                          $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                          $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                          Now, let $f(x)=x^frac23.$



                                          Thus, $f$ is a concave function.



                                          Also, let $x_1geq x_2geq...geq x_n.$



                                          Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                          $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                                          share|cite|improve this answer









                                          $endgroup$



















                                            0












                                            $begingroup$

                                            Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                            Now, let $a_kb_kc_k=x_k.$



                                            Thus, by Holder
                                            $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                            $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                            $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                            Now, let $f(x)=x^frac23.$



                                            Thus, $f$ is a concave function.



                                            Also, let $x_1geq x_2geq...geq x_n.$



                                            Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                            $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                                            share|cite|improve this answer









                                            $endgroup$

















                                              0












                                              0








                                              0





                                              $begingroup$

                                              Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                              Now, let $a_kb_kc_k=x_k.$



                                              Thus, by Holder
                                              $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                              $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                              $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                              Now, let $f(x)=x^frac23.$



                                              Thus, $f$ is a concave function.



                                              Also, let $x_1geq x_2geq...geq x_n.$



                                              Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                              $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.






                                              share|cite|improve this answer









                                              $endgroup$



                                              Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.



                                              Now, let $a_kb_kc_k=x_k.$



                                              Thus, by Holder
                                              $$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
                                              $$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
                                              $$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
                                              Now, let $f(x)=x^frac23.$



                                              Thus, $f$ is a concave function.



                                              Also, let $x_1geq x_2geq...geq x_n.$



                                              Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
                                              $$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.







                                              share|cite|improve this answer












                                              share|cite|improve this answer



                                              share|cite|improve this answer










                                              answered 6 hours ago









                                              Michael RozenbergMichael Rozenberg

                                              123k20 gold badges105 silver badges210 bronze badges




                                              123k20 gold badges105 silver badges210 bronze badges






























                                                  draft saved

                                                  draft discarded
















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid


                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.

                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3314387%2fupper-bound-for-a-sum%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                                                  Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                                                  Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її