Upper Bound for a SumUpper bound for the absolute value of an inner productIs this an upper bound or a lower bound.How to prove sum of squares upper boundUpper bound of a sumAn upper-bound problem of sum of positive numbersHow can I find the upper bound of $E(XYZ)$?Finding an Upper Bound on This InequalityShowing $ left(fracaa + 2bright)^2 + left(fracbb + 2cright)^2 + left(fraccc + 2aright)^2 geq 1/3 $An upper bound on the logarithm of factorialUpper bound on discrepancy of two sums
Does a humanoid possessed by a ghost register as undead to a paladin's Divine Sense?
A Checkmate of Dubious Legality
How to call made-up data?
Why did the US Airways Flight 1549 passengers stay on the wings?
Is unspent vacation time a good argument in pay negotiations?
What are the limitations of the Hendersson-Hasselbalch equation?
How can I perform a deterministic physics simulation?
Is there a command-line tool for converting html files to pdf?
Broken bottom bracket?
Why is it to say 'paucis post diebus'?
What could prevent players from leaving an island?
How to design an effective polearm-bow hybrid?
How to win against ants
Plotting Autoregressive Functions / Linear Difference Equations
“The Fourier transform cannot measure two phases at the same frequency.” Why not?
The warlock of firetop mountain, what's the deal with reference 192?
Upper Bound for a Sum
Why are there yellow dot stickers on the front doors of businesses in Russia?
Variable doesn't parse as string
Generate random number in Unity without class ambiguity
Why do my fried eggs start browning very fast?
How do I show and not tell a backstory?
Is an "are" omitted in this sentence
Make lens aperture in Tikz
Upper Bound for a Sum
Upper bound for the absolute value of an inner productIs this an upper bound or a lower bound.How to prove sum of squares upper boundUpper bound of a sumAn upper-bound problem of sum of positive numbersHow can I find the upper bound of $E(XYZ)$?Finding an Upper Bound on This InequalityShowing $ left(fracaa + 2bright)^2 + left(fracbb + 2cright)^2 + left(fraccc + 2aright)^2 geq 1/3 $An upper bound on the logarithm of factorialUpper bound on discrepancy of two sums
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
Can you help me prove the following inequality:
$$
(sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
$$
where $a's,b's,c's in mathrmR$
I tried to use Cauchy's inequality to prove this but got stuck.
inequality cauchy-schwarz-inequality holder-inequality karamata-inequality
$endgroup$
add a comment |
$begingroup$
Can you help me prove the following inequality:
$$
(sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
$$
where $a's,b's,c's in mathrmR$
I tried to use Cauchy's inequality to prove this but got stuck.
inequality cauchy-schwarz-inequality holder-inequality karamata-inequality
$endgroup$
add a comment |
$begingroup$
Can you help me prove the following inequality:
$$
(sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
$$
where $a's,b's,c's in mathrmR$
I tried to use Cauchy's inequality to prove this but got stuck.
inequality cauchy-schwarz-inequality holder-inequality karamata-inequality
$endgroup$
Can you help me prove the following inequality:
$$
(sum_k=1^na_kb_kc_k)^2 leq sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2
$$
where $a's,b's,c's in mathrmR$
I tried to use Cauchy's inequality to prove this but got stuck.
inequality cauchy-schwarz-inequality holder-inequality karamata-inequality
inequality cauchy-schwarz-inequality holder-inequality karamata-inequality
edited 6 hours ago
Michael Rozenberg
123k20 gold badges105 silver badges210 bronze badges
123k20 gold badges105 silver badges210 bronze badges
asked 8 hours ago
A Slow LearnerA Slow Learner
5324 silver badges14 bronze badges
5324 silver badges14 bronze badges
add a comment |
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.
$endgroup$
2
$begingroup$
fantastic............................................
$endgroup$
– Guy Fsone
7 hours ago
add a comment |
$begingroup$
You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
$$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$
So, the inequality should also work over $mathbbC$.
$endgroup$
add a comment |
$begingroup$
$(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.
The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.
$endgroup$
add a comment |
$begingroup$
I'd like to add one more version.
First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
Without loss of generality, I will consider everything positive from now on.
Now let's prove $2$ lemmas.
Lemma L1
$$
sum_k=1^n x_k^2 y_k^2
leq
left(sum_k=1^n x_k y_kright)^2,
$$
obvious, since sum on the right contains everything on the left plus something more.
Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
$$
left(vecx cdot vecyright)^2 =
left(sum_k=1^n x_k y_kright)^2
;quad
left(vecx cdot vecxright) left(vecy cdot vecyright) =
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
But we know that
$$
left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
= left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
$$
where $phi$ is an angle between $vecx$ and $vecy$.
Since $cos^2(phi) leq 1$ we can state
$$
left(sum_k=1^n x_k y_kright)^2 leq
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
Now we are equipped to do the proof
$$
left(sum_k=1^n a_k b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
stackreltextL1leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
$$
QED
$endgroup$
add a comment |
$begingroup$
Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.
Now, let $a_kb_kc_k=x_k.$
Thus, by Holder
$$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
$$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
$$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
Now, let $f(x)=x^frac23.$
Thus, $f$ is a concave function.
Also, let $x_1geq x_2geq...geq x_n.$
Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
$$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3314387%2fupper-bound-for-a-sum%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.
$endgroup$
2
$begingroup$
fantastic............................................
$endgroup$
– Guy Fsone
7 hours ago
add a comment |
$begingroup$
For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.
$endgroup$
2
$begingroup$
fantastic............................................
$endgroup$
– Guy Fsone
7 hours ago
add a comment |
$begingroup$
For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.
$endgroup$
For all $k$ between $1$ and $n$, we have that $c_k^2 leq sum limits_i=1^n c_i^2$, therefore you get that $sum limits_k=1^n b_k^2 c_k^2 leq sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$, since all the $b_k^2$ are non negative. Now by Cauchy's inequality $(sum limits_k=1^n a_kb_kc_k)^2leq sum limits_k=1^n a_k^2 sum limits_k=1^n (b_k c_k)^2 leq sum limits_k=1^n a_k^2 sum limits_k=1^n b_k^2 sum limits_k=1^n c_k^2$.
answered 8 hours ago
KeenKeen
6132 silver badges11 bronze badges
6132 silver badges11 bronze badges
2
$begingroup$
fantastic............................................
$endgroup$
– Guy Fsone
7 hours ago
add a comment |
2
$begingroup$
fantastic............................................
$endgroup$
– Guy Fsone
7 hours ago
2
2
$begingroup$
fantastic............................................
$endgroup$
– Guy Fsone
7 hours ago
$begingroup$
fantastic............................................
$endgroup$
– Guy Fsone
7 hours ago
add a comment |
$begingroup$
You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
$$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$
So, the inequality should also work over $mathbbC$.
$endgroup$
add a comment |
$begingroup$
You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
$$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$
So, the inequality should also work over $mathbbC$.
$endgroup$
add a comment |
$begingroup$
You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
$$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$
So, the inequality should also work over $mathbbC$.
$endgroup$
You can apply Cauchy's inequality twice. It may be more convenient to use vector notation. Let $d_k = a_kb_k$.
$$||ccdot d||^2 leq ||c||^2||d||^2 = ||c||^2||a cdot b||^2 leq ||c||^2||a||^2||b||^2.$$
So, the inequality should also work over $mathbbC$.
answered 7 hours ago
D.B.D.B.
2,0792 silver badges10 bronze badges
2,0792 silver badges10 bronze badges
add a comment |
add a comment |
$begingroup$
$(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.
The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.
$endgroup$
add a comment |
$begingroup$
$(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.
The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.
$endgroup$
add a comment |
$begingroup$
$(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.
The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.
$endgroup$
$(sum_k=1^na_kb_kc_k)^2le sum_k=1^na_k^2sum_k=1^n(b_kc_k)^2le sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2$.
The last inequality can be seen with $sum_k=1^nb_k^2sum_k=1^nc_k^2=sum_k=1^nsum_j=1^n(b_kc_j)^2ge sum_k=1^n(b_kc_k)^2$.
answered 7 hours ago
herb steinbergherb steinberg
4,5042 gold badges3 silver badges12 bronze badges
4,5042 gold badges3 silver badges12 bronze badges
add a comment |
add a comment |
$begingroup$
I'd like to add one more version.
First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
Without loss of generality, I will consider everything positive from now on.
Now let's prove $2$ lemmas.
Lemma L1
$$
sum_k=1^n x_k^2 y_k^2
leq
left(sum_k=1^n x_k y_kright)^2,
$$
obvious, since sum on the right contains everything on the left plus something more.
Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
$$
left(vecx cdot vecyright)^2 =
left(sum_k=1^n x_k y_kright)^2
;quad
left(vecx cdot vecxright) left(vecy cdot vecyright) =
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
But we know that
$$
left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
= left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
$$
where $phi$ is an angle between $vecx$ and $vecy$.
Since $cos^2(phi) leq 1$ we can state
$$
left(sum_k=1^n x_k y_kright)^2 leq
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
Now we are equipped to do the proof
$$
left(sum_k=1^n a_k b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
stackreltextL1leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
$$
QED
$endgroup$
add a comment |
$begingroup$
I'd like to add one more version.
First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
Without loss of generality, I will consider everything positive from now on.
Now let's prove $2$ lemmas.
Lemma L1
$$
sum_k=1^n x_k^2 y_k^2
leq
left(sum_k=1^n x_k y_kright)^2,
$$
obvious, since sum on the right contains everything on the left plus something more.
Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
$$
left(vecx cdot vecyright)^2 =
left(sum_k=1^n x_k y_kright)^2
;quad
left(vecx cdot vecxright) left(vecy cdot vecyright) =
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
But we know that
$$
left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
= left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
$$
where $phi$ is an angle between $vecx$ and $vecy$.
Since $cos^2(phi) leq 1$ we can state
$$
left(sum_k=1^n x_k y_kright)^2 leq
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
Now we are equipped to do the proof
$$
left(sum_k=1^n a_k b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
stackreltextL1leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
$$
QED
$endgroup$
add a comment |
$begingroup$
I'd like to add one more version.
First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
Without loss of generality, I will consider everything positive from now on.
Now let's prove $2$ lemmas.
Lemma L1
$$
sum_k=1^n x_k^2 y_k^2
leq
left(sum_k=1^n x_k y_kright)^2,
$$
obvious, since sum on the right contains everything on the left plus something more.
Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
$$
left(vecx cdot vecyright)^2 =
left(sum_k=1^n x_k y_kright)^2
;quad
left(vecx cdot vecxright) left(vecy cdot vecyright) =
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
But we know that
$$
left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
= left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
$$
where $phi$ is an angle between $vecx$ and $vecy$.
Since $cos^2(phi) leq 1$ we can state
$$
left(sum_k=1^n x_k y_kright)^2 leq
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
Now we are equipped to do the proof
$$
left(sum_k=1^n a_k b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
stackreltextL1leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
$$
QED
$endgroup$
I'd like to add one more version.
First, notice that it is enough to prove the inequality for positive numbers -- left side can become only smaller if any negative number is present, while the right side does not change.
Without loss of generality, I will consider everything positive from now on.
Now let's prove $2$ lemmas.
Lemma L1
$$
sum_k=1^n x_k^2 y_k^2
leq
left(sum_k=1^n x_k y_kright)^2,
$$
obvious, since sum on the right contains everything on the left plus something more.
Lemma L2. Consider two vectors $vecx$ and $vecy$ that have components $x_1,dots,x_n$ and $y_1,dots,y_n$ and following scalar products
$$
left(vecx cdot vecyright)^2 =
left(sum_k=1^n x_k y_kright)^2
;quad
left(vecx cdot vecxright) left(vecy cdot vecyright) =
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
But we know that
$$
left(vecx cdot vecyright)^2 = |vecx|^2 |vecy|^2 cos^2(phi)
= left(vecx cdot vecxright) left(vecy cdot vecyright) cos^2(phi),
$$
where $phi$ is an angle between $vecx$ and $vecy$.
Since $cos^2(phi) leq 1$ we can state
$$
left(sum_k=1^n x_k y_kright)^2 leq
left(sum_k=1^n x_k^2right) left(sum_k=1^n y_k^2right).
$$
Now we are equipped to do the proof
$$
left(sum_k=1^n a_k b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n (b_k c_k)^2right)
stackreltextL1leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k c_kright)^2
stackreltextL2leq
left(sum_k=1^n a_k^2right) left(sum_k=1^n b_k^2right) left(sum_k=1^n c_k^2right)
$$
QED
answered 7 hours ago
guestguest
3261 silver badge3 bronze badges
3261 silver badge3 bronze badges
add a comment |
add a comment |
$begingroup$
Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.
Now, let $a_kb_kc_k=x_k.$
Thus, by Holder
$$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
$$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
$$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
Now, let $f(x)=x^frac23.$
Thus, $f$ is a concave function.
Also, let $x_1geq x_2geq...geq x_n.$
Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
$$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.
$endgroup$
add a comment |
$begingroup$
Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.
Now, let $a_kb_kc_k=x_k.$
Thus, by Holder
$$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
$$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
$$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
Now, let $f(x)=x^frac23.$
Thus, $f$ is a concave function.
Also, let $x_1geq x_2geq...geq x_n.$
Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
$$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.
$endgroup$
add a comment |
$begingroup$
Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.
Now, let $a_kb_kc_k=x_k.$
Thus, by Holder
$$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
$$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
$$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
Now, let $f(x)=x^frac23.$
Thus, $f$ is a concave function.
Also, let $x_1geq x_2geq...geq x_n.$
Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
$$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.
$endgroup$
Since the RHS is non-negative and is not changed after substitution $a_krightarrow -a_k$ and a similar for another variables, it's enough to assume that for any $k$, $a_kgeq0$, $b_kgeq0$ and $c_kgeq0$.
Now, let $a_kb_kc_k=x_k.$
Thus, by Holder
$$sum_k=1^na_k^2sum_k=1^nb_k^2sum_k=1^nc_k^2geqleft(sum_k=1^nsqrt[3]a_k^2b_k^2c_k^2right)^3$$ and it's enough to prove that
$$left(sum_k=1^nx_k^frac23right)^3geqleft(sum_k=1^nx_kright)^2$$ or
$$sum_k=1^nx_k^frac23geqleft(sum_k=1^nx_kright)^frac23.$$
Now, let $f(x)=x^frac23.$
Thus, $f$ is a concave function.
Also, let $x_1geq x_2geq...geq x_n.$
Thus, $$(x_1+x_2+...+x_n,0,...,0)succ(x_1,x_2,...,x_n)$$ and by Karamata we obtain:
$$f(x_1)+f(x_2)+...+f(x_k)geq f(x_1+x_2+...+x_n)+f(0)+...+f(0),$$ which ends a proof.
answered 6 hours ago
Michael RozenbergMichael Rozenberg
123k20 gold badges105 silver badges210 bronze badges
123k20 gold badges105 silver badges210 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3314387%2fupper-bound-for-a-sum%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown