From system of coupled ODEs to separable ODESystem of Nonlinear ODEs.Bounded solutions of a linear non-autonomous ODESolve linear system of ODEs using Laplace transformConverting an ODE into a system of first order ODEsPhase portrait of system of nonlinear ODEsFinding a second order ODE from a system of equationsODE system: change 't' to get a linear and autonomous systemHow to derive the higher order linear ODE from autonomous $1$st order ODE?Solving system of ODEsSolving an ODE system which depends on a periodic function

Calling GPL'ed socket server inside Docker?

Do any instruments not produce overtones?

PC video game involving floating islands doing aerial combat

How do I write "Show, Don't Tell" as an Asperger?

Adding two lambda-functions in C++

Who operates delivery flights for commercial airlines?

What is in `tex.print` or `tex.sprint`?

Payment instructions from HomeAway look fishy to me

Why did a party with more votes get fewer seats in the 2019 European Parliament election in Denmark?

PhD student with mental health issues and bad performance

Is it legal in the UK for politicians to lie to the public for political gain?

How hard would it be to convert a glider into an powered electric aircraft?

Avoiding cliches when writing gods

What do we gain with higher order logics?

Why don’t airliners have temporary liveries?

You've spoiled/damaged the card

How can this map be coloured using four colours?

Why did Hela need Heimdal's sword?

C SIGINT signal in Linux

Can a 2nd-level sorcerer use sorcery points to create a 2nd-level spell slot?

What happens to foam insulation board after you pour concrete slab?

How to make thick Asian sauces?

What is the advantage of carrying a tripod and ND-filters when you could use image stacking instead?

Implement Homestuck's Catenative Doomsday Dice Cascader



From system of coupled ODEs to separable ODE


System of Nonlinear ODEs.Bounded solutions of a linear non-autonomous ODESolve linear system of ODEs using Laplace transformConverting an ODE into a system of first order ODEsPhase portrait of system of nonlinear ODEsFinding a second order ODE from a system of equationsODE system: change 't' to get a linear and autonomous systemHow to derive the higher order linear ODE from autonomous $1$st order ODE?Solving system of ODEsSolving an ODE system which depends on a periodic function













3












$begingroup$


How does one go from



beginalign
dotx&=y\
doty&=-x^3
endalign



to the following ODE?



$$fracdydx = -fracx^3y$$










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    $fracdydt = fracdydxfracdxdt Rightarrow -x^3 = fracdydx y$
    $endgroup$
    – Cesareo
    8 hours ago















3












$begingroup$


How does one go from



beginalign
dotx&=y\
doty&=-x^3
endalign



to the following ODE?



$$fracdydx = -fracx^3y$$










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    $fracdydt = fracdydxfracdxdt Rightarrow -x^3 = fracdydx y$
    $endgroup$
    – Cesareo
    8 hours ago













3












3








3





$begingroup$


How does one go from



beginalign
dotx&=y\
doty&=-x^3
endalign



to the following ODE?



$$fracdydx = -fracx^3y$$










share|cite|improve this question











$endgroup$




How does one go from



beginalign
dotx&=y\
doty&=-x^3
endalign



to the following ODE?



$$fracdydx = -fracx^3y$$







ordinary-differential-equations






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 8 hours ago









Rodrigo de Azevedo

13.4k42065




13.4k42065










asked 8 hours ago









ParsevalParseval

3,2061720




3,2061720







  • 2




    $begingroup$
    $fracdydt = fracdydxfracdxdt Rightarrow -x^3 = fracdydx y$
    $endgroup$
    – Cesareo
    8 hours ago












  • 2




    $begingroup$
    $fracdydt = fracdydxfracdxdt Rightarrow -x^3 = fracdydx y$
    $endgroup$
    – Cesareo
    8 hours ago







2




2




$begingroup$
$fracdydt = fracdydxfracdxdt Rightarrow -x^3 = fracdydx y$
$endgroup$
– Cesareo
8 hours ago




$begingroup$
$fracdydt = fracdydxfracdxdt Rightarrow -x^3 = fracdydx y$
$endgroup$
– Cesareo
8 hours ago










3 Answers
3






active

oldest

votes


















5












$begingroup$

Notice that:



$$dotx = y Rightarrow dx = ydt,$$



and



$$doty = -x^3 Rightarrow dy = -x^3 dt.$$



Therefore:



$$fracdydx = frac-x^3dtydt = -fracx^3y$$.






share|cite|improve this answer









$endgroup$




















    4












    $begingroup$

    Hint:
    $$fracfracdydtfracdxdt=fracdydx$$






    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$

      We know that $doty=-x^3$. Divide this by $dotx=y$ and we get $fracdotydotx=frac-x^3y$. But $fracdotydotx$ is just $fracdydx$ so we're done.






      share|cite|improve this answer









      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3247885%2ffrom-system-of-coupled-odes-to-separable-ode%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        Notice that:



        $$dotx = y Rightarrow dx = ydt,$$



        and



        $$doty = -x^3 Rightarrow dy = -x^3 dt.$$



        Therefore:



        $$fracdydx = frac-x^3dtydt = -fracx^3y$$.






        share|cite|improve this answer









        $endgroup$

















          5












          $begingroup$

          Notice that:



          $$dotx = y Rightarrow dx = ydt,$$



          and



          $$doty = -x^3 Rightarrow dy = -x^3 dt.$$



          Therefore:



          $$fracdydx = frac-x^3dtydt = -fracx^3y$$.






          share|cite|improve this answer









          $endgroup$















            5












            5








            5





            $begingroup$

            Notice that:



            $$dotx = y Rightarrow dx = ydt,$$



            and



            $$doty = -x^3 Rightarrow dy = -x^3 dt.$$



            Therefore:



            $$fracdydx = frac-x^3dtydt = -fracx^3y$$.






            share|cite|improve this answer









            $endgroup$



            Notice that:



            $$dotx = y Rightarrow dx = ydt,$$



            and



            $$doty = -x^3 Rightarrow dy = -x^3 dt.$$



            Therefore:



            $$fracdydx = frac-x^3dtydt = -fracx^3y$$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 8 hours ago









            the_candymanthe_candyman

            9,41732147




            9,41732147





















                4












                $begingroup$

                Hint:
                $$fracfracdydtfracdxdt=fracdydx$$






                share|cite|improve this answer









                $endgroup$

















                  4












                  $begingroup$

                  Hint:
                  $$fracfracdydtfracdxdt=fracdydx$$






                  share|cite|improve this answer









                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    Hint:
                    $$fracfracdydtfracdxdt=fracdydx$$






                    share|cite|improve this answer









                    $endgroup$



                    Hint:
                    $$fracfracdydtfracdxdt=fracdydx$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 8 hours ago









                    E.H.EE.H.E

                    18.2k12070




                    18.2k12070





















                        2












                        $begingroup$

                        We know that $doty=-x^3$. Divide this by $dotx=y$ and we get $fracdotydotx=frac-x^3y$. But $fracdotydotx$ is just $fracdydx$ so we're done.






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          We know that $doty=-x^3$. Divide this by $dotx=y$ and we get $fracdotydotx=frac-x^3y$. But $fracdotydotx$ is just $fracdydx$ so we're done.






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            We know that $doty=-x^3$. Divide this by $dotx=y$ and we get $fracdotydotx=frac-x^3y$. But $fracdotydotx$ is just $fracdydx$ so we're done.






                            share|cite|improve this answer









                            $endgroup$



                            We know that $doty=-x^3$. Divide this by $dotx=y$ and we get $fracdotydotx=frac-x^3y$. But $fracdotydotx$ is just $fracdydx$ so we're done.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 8 hours ago









                            auscryptauscrypt

                            4,326212




                            4,326212



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3247885%2ffrom-system-of-coupled-odes-to-separable-ode%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                                Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                                Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її