Limit to extrusion volumeCan commodity 3d printer extrusion hardware and filament be used for injection molding?
How photons get into the eyes?
Word for a small burst of laughter that can't be held back
1980s (or earlier) book where people live a long time but they have short memories
Credit card offering 0.5 miles for every cent rounded up. Too good to be true?
What makes linear regression with polynomial features curvy?
PhD student with mental health issues and bad performance
Did Darth Vader wear the same suit for 20+ years?
What is the purpose of building foundations?
Linux tr to convert vertical text to horizontal
Who operates delivery flights for commercial airlines?
Do adult Russians normally hand-write Cyrillic as cursive or as block letters?
Count down from 0 to 5 seconds and repeat
Limit to extrusion volume
X-shaped crossword
correct term describing the action of sending a brand-new ship out into its first seafaring trip
Avoiding cliches when writing gods
Responsibility for visa checking
Bent spoke design wheels — feasible?
What is the right way to float a home lab?
How were concentration and extermination camp guards recruited?
Explain Ant-Man's "not it" scene from Avengers: Endgame
Riley's, assemble!
Is the decompression of compressed and encrypted data without decryption also theoretically impossible?
Is it legal in the UK for politicians to lie to the public for political gain?
Limit to extrusion volume
Can commodity 3d printer extrusion hardware and filament be used for injection molding?
$begingroup$
Assuming heat transfer to melt the filament is not an issue, what’s the bottleneck in pushing more filament through the nozzle? Is extrusion volume per time proportional to applied extruder torque?
extruder
$endgroup$
add a comment |
$begingroup$
Assuming heat transfer to melt the filament is not an issue, what’s the bottleneck in pushing more filament through the nozzle? Is extrusion volume per time proportional to applied extruder torque?
extruder
$endgroup$
add a comment |
$begingroup$
Assuming heat transfer to melt the filament is not an issue, what’s the bottleneck in pushing more filament through the nozzle? Is extrusion volume per time proportional to applied extruder torque?
extruder
$endgroup$
Assuming heat transfer to melt the filament is not an issue, what’s the bottleneck in pushing more filament through the nozzle? Is extrusion volume per time proportional to applied extruder torque?
extruder
extruder
asked 8 hours ago
user1282931user1282931
1262
1262
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The molten plastic in the extruder becomes a hydraulic fluid effectively when it gets melted. You're pushing on a fat piston (1.75 mm or 2.85 mm, depending on filament type), and shoving fluid out through a 0.4 mm or so hole. There's a limit to flow rate at a given pressure, but the bigger issue actually tends to be friction. Molten plastic really loves to grab on to metal, and the ratio of surface area to volume is fairly high in the long, skinny tube that is the inside of an extruder. To make matters worse, the not-quite-molten section of the melt zone up at the top normally doesn't make a lot of contact with the walls due to lower pressures not deforming the plastic all that much, but at higher pressures you get much more deformation, increasing the linear distance that the plastic is dragging against the tube walls, and the pressure with which the two surfaces are bonding together. Especially in cheapo clone extruders you'll find roughly bored inner surfaces with many circumferential grooves which exacerbate this issue - this is why most extruders have a PTFE lining as far down as they can go. I had this issue in my $3 "all-steel" extruder barrel, where even printing PLA was an issue because of how readily the plastic formed huge plugs and grabbed the inside of the extruder.
So what you end up with, is that increased torque mostly linearly translates to increased pressure, which results in linearly increased friction inside the barrel, plus a little bit extra due to extra deformation in the top of the melt zone. You can polish the inside of the barrel (heatbreak? seen both terms) to help alleviate internal friction somewhat.
To make things even more fun, there's obviously a limit with how much force you can exert through the mating surface of a single hobbed bolt and the side of the filament. Too much force and the teeth will simply rip off the side of the filament and then you'll have no feeding torque whatsoever. To get much higher torque you'd need to design an extruder that both supports the filament much better than modern designs do, and spreads the force out over a larger surface area, either by using a much larger diameter feed gear, or multiple tightly-coupled feed gears.
I went into some degree of detail on the feed mechanism in this answer that another user asked about using a commercial extruder for plastic injection molding, which overlaps somewhat with your question here.
I know the original question assumed perfect heat transfer that was not a limiting factor to the process, but how that actually works is relevant to the question as well. E3D took one approach with their Volcano design, simply by making the melt zone much longer to increase heat transfer; the downside is there's obviously substantially more friction when you've got 4x the linear distance of molten plastic against metal, assuming you're not using a PTFE liner. This does have the advantage of letting the plastic take its time to reach the target temperature, decreasing how far over your target plastic temperature you need to have the heating element. One thing not often discussed in 3d printers is the fact that the plastic asymptotically approaches the temperature registered on your thermistor. If you're printing very, very slowly, your plastic will nearly be exactly at the target temperature. If you print very quickly with very high volumes, you'll tend to have slightly cooler plastic than intended because it simply wasn't in contact with the heater long enough to come up to temperature. The solution for very small designs might be higher temperatures, but the drawback there is that if you slow down even for a moment, say moving to thinner line widths or picking up and moving the extruder, you'll overheat the plastic. So there's practicality questions that need to be answered to determine how you'll actually heat that much plastic to the right temperature. Increased distance improves reliability at the cost of increased friction (and therefore extruder torque required), and increased temperature mostly bypasses that question at the cost of reliability.
TL;DR Increased extrusion speed requires increased pressure, which increases friction dramatically and in a non-linear fashion and results in stripped filament.
New contributor
$endgroup$
$begingroup$
Could you theoretically do an "all PTFE" hotend? Something like nonstick cookware, all the way through the nozzle.
$endgroup$
– R..
1 hour ago
add a comment |
$begingroup$
The maximum flow would be restricted by the nozzle diameter (there is a limit how much flow you can push through an orifice, e.g. this is how water saving inserts work in shower heads) and your extruder setup (the maximum stepper speed, stepper max torque, micro stepping, gearing, filament grip, etc.)
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "640"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2f3dprinting.stackexchange.com%2fquestions%2f10138%2flimit-to-extrusion-volume%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The molten plastic in the extruder becomes a hydraulic fluid effectively when it gets melted. You're pushing on a fat piston (1.75 mm or 2.85 mm, depending on filament type), and shoving fluid out through a 0.4 mm or so hole. There's a limit to flow rate at a given pressure, but the bigger issue actually tends to be friction. Molten plastic really loves to grab on to metal, and the ratio of surface area to volume is fairly high in the long, skinny tube that is the inside of an extruder. To make matters worse, the not-quite-molten section of the melt zone up at the top normally doesn't make a lot of contact with the walls due to lower pressures not deforming the plastic all that much, but at higher pressures you get much more deformation, increasing the linear distance that the plastic is dragging against the tube walls, and the pressure with which the two surfaces are bonding together. Especially in cheapo clone extruders you'll find roughly bored inner surfaces with many circumferential grooves which exacerbate this issue - this is why most extruders have a PTFE lining as far down as they can go. I had this issue in my $3 "all-steel" extruder barrel, where even printing PLA was an issue because of how readily the plastic formed huge plugs and grabbed the inside of the extruder.
So what you end up with, is that increased torque mostly linearly translates to increased pressure, which results in linearly increased friction inside the barrel, plus a little bit extra due to extra deformation in the top of the melt zone. You can polish the inside of the barrel (heatbreak? seen both terms) to help alleviate internal friction somewhat.
To make things even more fun, there's obviously a limit with how much force you can exert through the mating surface of a single hobbed bolt and the side of the filament. Too much force and the teeth will simply rip off the side of the filament and then you'll have no feeding torque whatsoever. To get much higher torque you'd need to design an extruder that both supports the filament much better than modern designs do, and spreads the force out over a larger surface area, either by using a much larger diameter feed gear, or multiple tightly-coupled feed gears.
I went into some degree of detail on the feed mechanism in this answer that another user asked about using a commercial extruder for plastic injection molding, which overlaps somewhat with your question here.
I know the original question assumed perfect heat transfer that was not a limiting factor to the process, but how that actually works is relevant to the question as well. E3D took one approach with their Volcano design, simply by making the melt zone much longer to increase heat transfer; the downside is there's obviously substantially more friction when you've got 4x the linear distance of molten plastic against metal, assuming you're not using a PTFE liner. This does have the advantage of letting the plastic take its time to reach the target temperature, decreasing how far over your target plastic temperature you need to have the heating element. One thing not often discussed in 3d printers is the fact that the plastic asymptotically approaches the temperature registered on your thermistor. If you're printing very, very slowly, your plastic will nearly be exactly at the target temperature. If you print very quickly with very high volumes, you'll tend to have slightly cooler plastic than intended because it simply wasn't in contact with the heater long enough to come up to temperature. The solution for very small designs might be higher temperatures, but the drawback there is that if you slow down even for a moment, say moving to thinner line widths or picking up and moving the extruder, you'll overheat the plastic. So there's practicality questions that need to be answered to determine how you'll actually heat that much plastic to the right temperature. Increased distance improves reliability at the cost of increased friction (and therefore extruder torque required), and increased temperature mostly bypasses that question at the cost of reliability.
TL;DR Increased extrusion speed requires increased pressure, which increases friction dramatically and in a non-linear fashion and results in stripped filament.
New contributor
$endgroup$
$begingroup$
Could you theoretically do an "all PTFE" hotend? Something like nonstick cookware, all the way through the nozzle.
$endgroup$
– R..
1 hour ago
add a comment |
$begingroup$
The molten plastic in the extruder becomes a hydraulic fluid effectively when it gets melted. You're pushing on a fat piston (1.75 mm or 2.85 mm, depending on filament type), and shoving fluid out through a 0.4 mm or so hole. There's a limit to flow rate at a given pressure, but the bigger issue actually tends to be friction. Molten plastic really loves to grab on to metal, and the ratio of surface area to volume is fairly high in the long, skinny tube that is the inside of an extruder. To make matters worse, the not-quite-molten section of the melt zone up at the top normally doesn't make a lot of contact with the walls due to lower pressures not deforming the plastic all that much, but at higher pressures you get much more deformation, increasing the linear distance that the plastic is dragging against the tube walls, and the pressure with which the two surfaces are bonding together. Especially in cheapo clone extruders you'll find roughly bored inner surfaces with many circumferential grooves which exacerbate this issue - this is why most extruders have a PTFE lining as far down as they can go. I had this issue in my $3 "all-steel" extruder barrel, where even printing PLA was an issue because of how readily the plastic formed huge plugs and grabbed the inside of the extruder.
So what you end up with, is that increased torque mostly linearly translates to increased pressure, which results in linearly increased friction inside the barrel, plus a little bit extra due to extra deformation in the top of the melt zone. You can polish the inside of the barrel (heatbreak? seen both terms) to help alleviate internal friction somewhat.
To make things even more fun, there's obviously a limit with how much force you can exert through the mating surface of a single hobbed bolt and the side of the filament. Too much force and the teeth will simply rip off the side of the filament and then you'll have no feeding torque whatsoever. To get much higher torque you'd need to design an extruder that both supports the filament much better than modern designs do, and spreads the force out over a larger surface area, either by using a much larger diameter feed gear, or multiple tightly-coupled feed gears.
I went into some degree of detail on the feed mechanism in this answer that another user asked about using a commercial extruder for plastic injection molding, which overlaps somewhat with your question here.
I know the original question assumed perfect heat transfer that was not a limiting factor to the process, but how that actually works is relevant to the question as well. E3D took one approach with their Volcano design, simply by making the melt zone much longer to increase heat transfer; the downside is there's obviously substantially more friction when you've got 4x the linear distance of molten plastic against metal, assuming you're not using a PTFE liner. This does have the advantage of letting the plastic take its time to reach the target temperature, decreasing how far over your target plastic temperature you need to have the heating element. One thing not often discussed in 3d printers is the fact that the plastic asymptotically approaches the temperature registered on your thermistor. If you're printing very, very slowly, your plastic will nearly be exactly at the target temperature. If you print very quickly with very high volumes, you'll tend to have slightly cooler plastic than intended because it simply wasn't in contact with the heater long enough to come up to temperature. The solution for very small designs might be higher temperatures, but the drawback there is that if you slow down even for a moment, say moving to thinner line widths or picking up and moving the extruder, you'll overheat the plastic. So there's practicality questions that need to be answered to determine how you'll actually heat that much plastic to the right temperature. Increased distance improves reliability at the cost of increased friction (and therefore extruder torque required), and increased temperature mostly bypasses that question at the cost of reliability.
TL;DR Increased extrusion speed requires increased pressure, which increases friction dramatically and in a non-linear fashion and results in stripped filament.
New contributor
$endgroup$
$begingroup$
Could you theoretically do an "all PTFE" hotend? Something like nonstick cookware, all the way through the nozzle.
$endgroup$
– R..
1 hour ago
add a comment |
$begingroup$
The molten plastic in the extruder becomes a hydraulic fluid effectively when it gets melted. You're pushing on a fat piston (1.75 mm or 2.85 mm, depending on filament type), and shoving fluid out through a 0.4 mm or so hole. There's a limit to flow rate at a given pressure, but the bigger issue actually tends to be friction. Molten plastic really loves to grab on to metal, and the ratio of surface area to volume is fairly high in the long, skinny tube that is the inside of an extruder. To make matters worse, the not-quite-molten section of the melt zone up at the top normally doesn't make a lot of contact with the walls due to lower pressures not deforming the plastic all that much, but at higher pressures you get much more deformation, increasing the linear distance that the plastic is dragging against the tube walls, and the pressure with which the two surfaces are bonding together. Especially in cheapo clone extruders you'll find roughly bored inner surfaces with many circumferential grooves which exacerbate this issue - this is why most extruders have a PTFE lining as far down as they can go. I had this issue in my $3 "all-steel" extruder barrel, where even printing PLA was an issue because of how readily the plastic formed huge plugs and grabbed the inside of the extruder.
So what you end up with, is that increased torque mostly linearly translates to increased pressure, which results in linearly increased friction inside the barrel, plus a little bit extra due to extra deformation in the top of the melt zone. You can polish the inside of the barrel (heatbreak? seen both terms) to help alleviate internal friction somewhat.
To make things even more fun, there's obviously a limit with how much force you can exert through the mating surface of a single hobbed bolt and the side of the filament. Too much force and the teeth will simply rip off the side of the filament and then you'll have no feeding torque whatsoever. To get much higher torque you'd need to design an extruder that both supports the filament much better than modern designs do, and spreads the force out over a larger surface area, either by using a much larger diameter feed gear, or multiple tightly-coupled feed gears.
I went into some degree of detail on the feed mechanism in this answer that another user asked about using a commercial extruder for plastic injection molding, which overlaps somewhat with your question here.
I know the original question assumed perfect heat transfer that was not a limiting factor to the process, but how that actually works is relevant to the question as well. E3D took one approach with their Volcano design, simply by making the melt zone much longer to increase heat transfer; the downside is there's obviously substantially more friction when you've got 4x the linear distance of molten plastic against metal, assuming you're not using a PTFE liner. This does have the advantage of letting the plastic take its time to reach the target temperature, decreasing how far over your target plastic temperature you need to have the heating element. One thing not often discussed in 3d printers is the fact that the plastic asymptotically approaches the temperature registered on your thermistor. If you're printing very, very slowly, your plastic will nearly be exactly at the target temperature. If you print very quickly with very high volumes, you'll tend to have slightly cooler plastic than intended because it simply wasn't in contact with the heater long enough to come up to temperature. The solution for very small designs might be higher temperatures, but the drawback there is that if you slow down even for a moment, say moving to thinner line widths or picking up and moving the extruder, you'll overheat the plastic. So there's practicality questions that need to be answered to determine how you'll actually heat that much plastic to the right temperature. Increased distance improves reliability at the cost of increased friction (and therefore extruder torque required), and increased temperature mostly bypasses that question at the cost of reliability.
TL;DR Increased extrusion speed requires increased pressure, which increases friction dramatically and in a non-linear fashion and results in stripped filament.
New contributor
$endgroup$
The molten plastic in the extruder becomes a hydraulic fluid effectively when it gets melted. You're pushing on a fat piston (1.75 mm or 2.85 mm, depending on filament type), and shoving fluid out through a 0.4 mm or so hole. There's a limit to flow rate at a given pressure, but the bigger issue actually tends to be friction. Molten plastic really loves to grab on to metal, and the ratio of surface area to volume is fairly high in the long, skinny tube that is the inside of an extruder. To make matters worse, the not-quite-molten section of the melt zone up at the top normally doesn't make a lot of contact with the walls due to lower pressures not deforming the plastic all that much, but at higher pressures you get much more deformation, increasing the linear distance that the plastic is dragging against the tube walls, and the pressure with which the two surfaces are bonding together. Especially in cheapo clone extruders you'll find roughly bored inner surfaces with many circumferential grooves which exacerbate this issue - this is why most extruders have a PTFE lining as far down as they can go. I had this issue in my $3 "all-steel" extruder barrel, where even printing PLA was an issue because of how readily the plastic formed huge plugs and grabbed the inside of the extruder.
So what you end up with, is that increased torque mostly linearly translates to increased pressure, which results in linearly increased friction inside the barrel, plus a little bit extra due to extra deformation in the top of the melt zone. You can polish the inside of the barrel (heatbreak? seen both terms) to help alleviate internal friction somewhat.
To make things even more fun, there's obviously a limit with how much force you can exert through the mating surface of a single hobbed bolt and the side of the filament. Too much force and the teeth will simply rip off the side of the filament and then you'll have no feeding torque whatsoever. To get much higher torque you'd need to design an extruder that both supports the filament much better than modern designs do, and spreads the force out over a larger surface area, either by using a much larger diameter feed gear, or multiple tightly-coupled feed gears.
I went into some degree of detail on the feed mechanism in this answer that another user asked about using a commercial extruder for plastic injection molding, which overlaps somewhat with your question here.
I know the original question assumed perfect heat transfer that was not a limiting factor to the process, but how that actually works is relevant to the question as well. E3D took one approach with their Volcano design, simply by making the melt zone much longer to increase heat transfer; the downside is there's obviously substantially more friction when you've got 4x the linear distance of molten plastic against metal, assuming you're not using a PTFE liner. This does have the advantage of letting the plastic take its time to reach the target temperature, decreasing how far over your target plastic temperature you need to have the heating element. One thing not often discussed in 3d printers is the fact that the plastic asymptotically approaches the temperature registered on your thermistor. If you're printing very, very slowly, your plastic will nearly be exactly at the target temperature. If you print very quickly with very high volumes, you'll tend to have slightly cooler plastic than intended because it simply wasn't in contact with the heater long enough to come up to temperature. The solution for very small designs might be higher temperatures, but the drawback there is that if you slow down even for a moment, say moving to thinner line widths or picking up and moving the extruder, you'll overheat the plastic. So there's practicality questions that need to be answered to determine how you'll actually heat that much plastic to the right temperature. Increased distance improves reliability at the cost of increased friction (and therefore extruder torque required), and increased temperature mostly bypasses that question at the cost of reliability.
TL;DR Increased extrusion speed requires increased pressure, which increases friction dramatically and in a non-linear fashion and results in stripped filament.
New contributor
edited 1 hour ago
0scar
15k32158
15k32158
New contributor
answered 4 hours ago
Nach0zNach0z
3264
3264
New contributor
New contributor
$begingroup$
Could you theoretically do an "all PTFE" hotend? Something like nonstick cookware, all the way through the nozzle.
$endgroup$
– R..
1 hour ago
add a comment |
$begingroup$
Could you theoretically do an "all PTFE" hotend? Something like nonstick cookware, all the way through the nozzle.
$endgroup$
– R..
1 hour ago
$begingroup$
Could you theoretically do an "all PTFE" hotend? Something like nonstick cookware, all the way through the nozzle.
$endgroup$
– R..
1 hour ago
$begingroup$
Could you theoretically do an "all PTFE" hotend? Something like nonstick cookware, all the way through the nozzle.
$endgroup$
– R..
1 hour ago
add a comment |
$begingroup$
The maximum flow would be restricted by the nozzle diameter (there is a limit how much flow you can push through an orifice, e.g. this is how water saving inserts work in shower heads) and your extruder setup (the maximum stepper speed, stepper max torque, micro stepping, gearing, filament grip, etc.)
$endgroup$
add a comment |
$begingroup$
The maximum flow would be restricted by the nozzle diameter (there is a limit how much flow you can push through an orifice, e.g. this is how water saving inserts work in shower heads) and your extruder setup (the maximum stepper speed, stepper max torque, micro stepping, gearing, filament grip, etc.)
$endgroup$
add a comment |
$begingroup$
The maximum flow would be restricted by the nozzle diameter (there is a limit how much flow you can push through an orifice, e.g. this is how water saving inserts work in shower heads) and your extruder setup (the maximum stepper speed, stepper max torque, micro stepping, gearing, filament grip, etc.)
$endgroup$
The maximum flow would be restricted by the nozzle diameter (there is a limit how much flow you can push through an orifice, e.g. this is how water saving inserts work in shower heads) and your extruder setup (the maximum stepper speed, stepper max torque, micro stepping, gearing, filament grip, etc.)
answered 1 hour ago
0scar0scar
15k32158
15k32158
add a comment |
add a comment |
Thanks for contributing an answer to 3D Printing Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2f3dprinting.stackexchange.com%2fquestions%2f10138%2flimit-to-extrusion-volume%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown