Number of generators of subgroup Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Torsion subgroupOn the minimal number of generators of a finite groupBound number of generators of a subgroup of a nilpotent group?Minimal number of generators for a finitely generated abelian $p$-groupA question on finitely generated Abelian groups with a minimal number of generatorsFactoring an Abelian groupThe number of internal direct summands of a finitely generated abelian groupFree group generated by two generators is isomorphic to product of two infinite cyclic groupsAlternative proof of the Fundamental Theorem of Abelian Groups??Hungerford Chapter 2 Section 2 Problem 2 WITHOUT using the structure theorem of finite abelian groups

newbie Q : How to read an output file in one command line

How does TikZ render an arc?

How to make an animal which can only breed for a certain number of generations?

Typical Calculus BC Separation of Variables Question

An isoperimetric-type inequality inside a cube

How much damage would a cupful of neutron star matter do to the Earth?

My mentor says to set image to Fine instead of RAW — how is this different from JPG?

Why does BitLocker not use RSA?

How do you write "wild blueberries flavored"?

Keep at all times, the minus sign above aligned with minus sign below

Problem with display of presentation

Did John Wesley plagiarize Matthew Henry...?

Fit odd number of triplets in a measure?

Is the Mordenkainens' Sword spell underpowered?

Determine whether an integer is a palindrome

Understanding piped commands in GNU/Linux

Derived column in a data extension

Why are current probes so expensive?

What are some likely causes to domain member PC losing contact to domain controller?

How to make triangles with rounded sides and corners? (squircle with 3 sides)

Noise in Eigenvalues plot

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

Is this Half-dragon Quaggoth boss monster balanced?

3D Masyu - A Die



Number of generators of subgroup



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Torsion subgroupOn the minimal number of generators of a finite groupBound number of generators of a subgroup of a nilpotent group?Minimal number of generators for a finitely generated abelian $p$-groupA question on finitely generated Abelian groups with a minimal number of generatorsFactoring an Abelian groupThe number of internal direct summands of a finitely generated abelian groupFree group generated by two generators is isomorphic to product of two infinite cyclic groupsAlternative proof of the Fundamental Theorem of Abelian Groups??Hungerford Chapter 2 Section 2 Problem 2 WITHOUT using the structure theorem of finite abelian groups










1












$begingroup$


I am trying to prove the following.



let $G$ be a finitely generated abelian group, and $H<G$ a subgroup such that there exists a subgroup $K<G$ and we can write $G=H oplus K$. Is it true that the minimal number of generators of H is strictly smaller than the minimal number of generators of $G$?



Clearly if G can not be written as a direct summand of $H$ then this is not true, just consider $G= mathbbZ$ and $H=2mathbbZ$.



I would like to prove it because I believe it can provide a simpler proof for the characterization of finitely generated abelian groups.










share|cite|improve this question











$endgroup$











  • $begingroup$
    $mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
    $endgroup$
    – lulu
    5 hours ago






  • 2




    $begingroup$
    Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
    $endgroup$
    – lulu
    5 hours ago










  • $begingroup$
    Thank you for pointing that out. I will edit to correct it.
    $endgroup$
    – Charles
    5 hours ago















1












$begingroup$


I am trying to prove the following.



let $G$ be a finitely generated abelian group, and $H<G$ a subgroup such that there exists a subgroup $K<G$ and we can write $G=H oplus K$. Is it true that the minimal number of generators of H is strictly smaller than the minimal number of generators of $G$?



Clearly if G can not be written as a direct summand of $H$ then this is not true, just consider $G= mathbbZ$ and $H=2mathbbZ$.



I would like to prove it because I believe it can provide a simpler proof for the characterization of finitely generated abelian groups.










share|cite|improve this question











$endgroup$











  • $begingroup$
    $mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
    $endgroup$
    – lulu
    5 hours ago






  • 2




    $begingroup$
    Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
    $endgroup$
    – lulu
    5 hours ago










  • $begingroup$
    Thank you for pointing that out. I will edit to correct it.
    $endgroup$
    – Charles
    5 hours ago













1












1








1





$begingroup$


I am trying to prove the following.



let $G$ be a finitely generated abelian group, and $H<G$ a subgroup such that there exists a subgroup $K<G$ and we can write $G=H oplus K$. Is it true that the minimal number of generators of H is strictly smaller than the minimal number of generators of $G$?



Clearly if G can not be written as a direct summand of $H$ then this is not true, just consider $G= mathbbZ$ and $H=2mathbbZ$.



I would like to prove it because I believe it can provide a simpler proof for the characterization of finitely generated abelian groups.










share|cite|improve this question











$endgroup$




I am trying to prove the following.



let $G$ be a finitely generated abelian group, and $H<G$ a subgroup such that there exists a subgroup $K<G$ and we can write $G=H oplus K$. Is it true that the minimal number of generators of H is strictly smaller than the minimal number of generators of $G$?



Clearly if G can not be written as a direct summand of $H$ then this is not true, just consider $G= mathbbZ$ and $H=2mathbbZ$.



I would like to prove it because I believe it can provide a simpler proof for the characterization of finitely generated abelian groups.







group-theory abelian-groups






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 5 hours ago







Charles

















asked 5 hours ago









CharlesCharles

582420




582420











  • $begingroup$
    $mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
    $endgroup$
    – lulu
    5 hours ago






  • 2




    $begingroup$
    Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
    $endgroup$
    – lulu
    5 hours ago










  • $begingroup$
    Thank you for pointing that out. I will edit to correct it.
    $endgroup$
    – Charles
    5 hours ago
















  • $begingroup$
    $mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
    $endgroup$
    – lulu
    5 hours ago






  • 2




    $begingroup$
    Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
    $endgroup$
    – lulu
    5 hours ago










  • $begingroup$
    Thank you for pointing that out. I will edit to correct it.
    $endgroup$
    – Charles
    5 hours ago















$begingroup$
$mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
$endgroup$
– lulu
5 hours ago




$begingroup$
$mathbb Zbig / 2mathbb Z oplus mathbb Zbig / 3mathbb Z $ is cyclic.
$endgroup$
– lulu
5 hours ago




2




2




$begingroup$
Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
$endgroup$
– lulu
5 hours ago




$begingroup$
Worth noting: "number of generators" is not well defined. I'm guessing you mean "minimal number of generators", but you should say so,
$endgroup$
– lulu
5 hours ago












$begingroup$
Thank you for pointing that out. I will edit to correct it.
$endgroup$
– Charles
5 hours ago




$begingroup$
Thank you for pointing that out. I will edit to correct it.
$endgroup$
– Charles
5 hours ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
$$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
and
$$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
However, $0oplusmathbbZ_3$ is generated by $(0,1).$






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196206%2fnumber-of-generators-of-subgroup%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
    $$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
    and
    $$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
    However, $0oplusmathbbZ_3$ is generated by $(0,1).$






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
      $$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
      and
      $$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
      However, $0oplusmathbbZ_3$ is generated by $(0,1).$






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
        $$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
        and
        $$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
        However, $0oplusmathbbZ_3$ is generated by $(0,1).$






        share|cite|improve this answer









        $endgroup$



        No, it is not true. Consider $mathbbZ_2oplusmathbbZ_3$. This has a generator $(1,1)$. Note that
        $$0oplusmathbbZ_3<mathbbZ_2oplusmathbbZ_3 ,$$
        and
        $$(mathbbZ_2oplus 0)oplus(0oplusmathbbZ_3)=mathbbZ_2oplusmathbbZ_3.$$
        However, $0oplusmathbbZ_3$ is generated by $(0,1).$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 5 hours ago









        MelodyMelody

        1,42212




        1,42212



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196206%2fnumber-of-generators-of-subgroup%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

            Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

            Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її