Clarification on IntegrabilityProve this inequality $lvert a - brvert < frac12lvert b rvert implies lvert a rvert > frac12lvert b rvert$A Riemann integral with a jump discontinuity at its lower limitProve if $f(0) = 0$ then $lim_x to 0^+xint_x^1 fracf(t)t^2dt = 0$ for regulated function $f$Improper integral and its convergence. Is this procedure correct? Any quicker and simpler ways?Prob. 7 (b), Chap. 6, in Baby Rudin: Example of a function such that $lim_c to 0+ int_c^1 f(x) mathrmdx$ exists but . . .The old and modern definitions of total variation are actually equivalent?Prove that $a_n=fracnn+1$ is convergentPrinciples of math analysis by Rudin, Chapter 6 Problem 7Find the flaw in the given proof: about the limit of a sequence
Does fossil fuels use since 1990 account for half of all the fossil fuels used in history?
Reimplementation of min() in Python
What kind of liquid can be seen 'leaking' from the upper surface of the wing of a Boeing 737-800?
Are employers legally allowed to pay employees in goods and services equal to or greater than the minimum wage?
What is the difference between 王 and 皇?
Is this n-speak?
Can a bald person be a Nazir?
A torrent of foreign terms
Why did IBM make public the PC BIOS source code?
What is a good class if we remove subclasses?
What is the hottest thing in the universe?
What is a "soap"?
Are there any other rule mechanics that could grant Thieves' Cant?
How would you translate this? バタコチーズライス
Will using a resistor in series with a LED to control its voltage increase the total energy expenditure?
Website error: "Walmart can’t use this browser"
Can the IPA represent all languages' tones?
Why aren’t there water shutoff valves for each room?
Modeling the uncertainty of the input parameters
Should I email my professor about a recommendation letter if he has offered me a job?
Why is tert-butoxide often used in elimination reactions when it is not necessary?
PhD advisor lost funding, need advice
Why is Python 2.7 still the default Python version in Ubuntu?
What are those bumps on top of the Antonov-225?
Clarification on Integrability
Prove this inequality $lvert a - brvert < frac12lvert b rvert implies lvert a rvert > frac12lvert b rvert$A Riemann integral with a jump discontinuity at its lower limitProve if $f(0) = 0$ then $lim_x to 0^+xint_x^1 fracf(t)t^2dt = 0$ for regulated function $f$Improper integral and its convergence. Is this procedure correct? Any quicker and simpler ways?Prob. 7 (b), Chap. 6, in Baby Rudin: Example of a function such that $lim_c to 0+ int_c^1 f(x) mathrmdx$ exists but . . .The old and modern definitions of total variation are actually equivalent?Prove that $a_n=fracnn+1$ is convergentPrinciples of math analysis by Rudin, Chapter 6 Problem 7Find the flaw in the given proof: about the limit of a sequence
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
If $f$ in integrable on some interval $[a,b]$ then we know that $lvert f rvert $ is also integrable on that same interval.
There is a problem in Rudin's Principles of Mathematical analysis such that we construct an $f$ where
$displaystyle int_0^1 f dx = lim_c downarrow 0 int_c^1 fdx$
exists and yet for $lvert f rvert$ this limit fails to exist.
How does this not contradict the implication above?
One such constuction is to set $f(x) = (-1)^k+1(k+1), forall x in (frac1k+1,frac1k]$.
real-analysis integration improper-integrals
$endgroup$
add a comment |
$begingroup$
If $f$ in integrable on some interval $[a,b]$ then we know that $lvert f rvert $ is also integrable on that same interval.
There is a problem in Rudin's Principles of Mathematical analysis such that we construct an $f$ where
$displaystyle int_0^1 f dx = lim_c downarrow 0 int_c^1 fdx$
exists and yet for $lvert f rvert$ this limit fails to exist.
How does this not contradict the implication above?
One such constuction is to set $f(x) = (-1)^k+1(k+1), forall x in (frac1k+1,frac1k]$.
real-analysis integration improper-integrals
$endgroup$
add a comment |
$begingroup$
If $f$ in integrable on some interval $[a,b]$ then we know that $lvert f rvert $ is also integrable on that same interval.
There is a problem in Rudin's Principles of Mathematical analysis such that we construct an $f$ where
$displaystyle int_0^1 f dx = lim_c downarrow 0 int_c^1 fdx$
exists and yet for $lvert f rvert$ this limit fails to exist.
How does this not contradict the implication above?
One such constuction is to set $f(x) = (-1)^k+1(k+1), forall x in (frac1k+1,frac1k]$.
real-analysis integration improper-integrals
$endgroup$
If $f$ in integrable on some interval $[a,b]$ then we know that $lvert f rvert $ is also integrable on that same interval.
There is a problem in Rudin's Principles of Mathematical analysis such that we construct an $f$ where
$displaystyle int_0^1 f dx = lim_c downarrow 0 int_c^1 fdx$
exists and yet for $lvert f rvert$ this limit fails to exist.
How does this not contradict the implication above?
One such constuction is to set $f(x) = (-1)^k+1(k+1), forall x in (frac1k+1,frac1k]$.
real-analysis integration improper-integrals
real-analysis integration improper-integrals
asked 8 hours ago
all.overall.over
897 bronze badges
897 bronze badges
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
There is no contradiction because $f$ is not Riemann-integrable on $[0,1]$. The fact that the limit $lim_c to 0int_c ^1f(x)dx$ exists does not mean that $f$ is Riemann-integrable on $[0,1]$. Note that Rudin says in the exercise that we can define the symbol $int_0^1f(x)dx$ to mean said limit in the case where we have a function on $(0,1]$. It does not mean that $f$ is Riemann-integrable on $[0,1]$. (Indeed, it isn't in your example. It isn't even bounded.) It is just an assignment of a value to a symbol.
PS: Note that part of the exercise is even to show that the two (a priori possibly conflicting) definitions of the symbol $int_ 0^1f(x)dx$ agree when $f$ is Riemann-integrable.
$endgroup$
add a comment |
$begingroup$
The implication $f$ is integrable $Rightarrow$ $|f|$ is integrable is true for Lebesgue-integrable functions. But the function that is constructed in this example is not Lebesgue-integrable. Its improper Riemann integral exists. That is a different property that does not imply Lebesgue-integrability.
$endgroup$
4
$begingroup$
This answer is misleading. Lebesgue integration is not even mentioned in the context of this exercise on Rudin, not to mention the fact that the very first sentence leaves itself quite open to the interpretation that the affirmation "$f$ integrable $implies$ $|f|$ integrable" only holds for Lebesgue integration, which is not true. It holds for Riemann integration as well. The issue is that OP is overloading a symbol to mean more than it does.
$endgroup$
– Aloizio Macedo♦
7 hours ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3322465%2fclarification-on-integrability%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
There is no contradiction because $f$ is not Riemann-integrable on $[0,1]$. The fact that the limit $lim_c to 0int_c ^1f(x)dx$ exists does not mean that $f$ is Riemann-integrable on $[0,1]$. Note that Rudin says in the exercise that we can define the symbol $int_0^1f(x)dx$ to mean said limit in the case where we have a function on $(0,1]$. It does not mean that $f$ is Riemann-integrable on $[0,1]$. (Indeed, it isn't in your example. It isn't even bounded.) It is just an assignment of a value to a symbol.
PS: Note that part of the exercise is even to show that the two (a priori possibly conflicting) definitions of the symbol $int_ 0^1f(x)dx$ agree when $f$ is Riemann-integrable.
$endgroup$
add a comment |
$begingroup$
There is no contradiction because $f$ is not Riemann-integrable on $[0,1]$. The fact that the limit $lim_c to 0int_c ^1f(x)dx$ exists does not mean that $f$ is Riemann-integrable on $[0,1]$. Note that Rudin says in the exercise that we can define the symbol $int_0^1f(x)dx$ to mean said limit in the case where we have a function on $(0,1]$. It does not mean that $f$ is Riemann-integrable on $[0,1]$. (Indeed, it isn't in your example. It isn't even bounded.) It is just an assignment of a value to a symbol.
PS: Note that part of the exercise is even to show that the two (a priori possibly conflicting) definitions of the symbol $int_ 0^1f(x)dx$ agree when $f$ is Riemann-integrable.
$endgroup$
add a comment |
$begingroup$
There is no contradiction because $f$ is not Riemann-integrable on $[0,1]$. The fact that the limit $lim_c to 0int_c ^1f(x)dx$ exists does not mean that $f$ is Riemann-integrable on $[0,1]$. Note that Rudin says in the exercise that we can define the symbol $int_0^1f(x)dx$ to mean said limit in the case where we have a function on $(0,1]$. It does not mean that $f$ is Riemann-integrable on $[0,1]$. (Indeed, it isn't in your example. It isn't even bounded.) It is just an assignment of a value to a symbol.
PS: Note that part of the exercise is even to show that the two (a priori possibly conflicting) definitions of the symbol $int_ 0^1f(x)dx$ agree when $f$ is Riemann-integrable.
$endgroup$
There is no contradiction because $f$ is not Riemann-integrable on $[0,1]$. The fact that the limit $lim_c to 0int_c ^1f(x)dx$ exists does not mean that $f$ is Riemann-integrable on $[0,1]$. Note that Rudin says in the exercise that we can define the symbol $int_0^1f(x)dx$ to mean said limit in the case where we have a function on $(0,1]$. It does not mean that $f$ is Riemann-integrable on $[0,1]$. (Indeed, it isn't in your example. It isn't even bounded.) It is just an assignment of a value to a symbol.
PS: Note that part of the exercise is even to show that the two (a priori possibly conflicting) definitions of the symbol $int_ 0^1f(x)dx$ agree when $f$ is Riemann-integrable.
edited 7 hours ago
answered 7 hours ago
Aloizio Macedo♦Aloizio Macedo
24.3k2 gold badges40 silver badges89 bronze badges
24.3k2 gold badges40 silver badges89 bronze badges
add a comment |
add a comment |
$begingroup$
The implication $f$ is integrable $Rightarrow$ $|f|$ is integrable is true for Lebesgue-integrable functions. But the function that is constructed in this example is not Lebesgue-integrable. Its improper Riemann integral exists. That is a different property that does not imply Lebesgue-integrability.
$endgroup$
4
$begingroup$
This answer is misleading. Lebesgue integration is not even mentioned in the context of this exercise on Rudin, not to mention the fact that the very first sentence leaves itself quite open to the interpretation that the affirmation "$f$ integrable $implies$ $|f|$ integrable" only holds for Lebesgue integration, which is not true. It holds for Riemann integration as well. The issue is that OP is overloading a symbol to mean more than it does.
$endgroup$
– Aloizio Macedo♦
7 hours ago
add a comment |
$begingroup$
The implication $f$ is integrable $Rightarrow$ $|f|$ is integrable is true for Lebesgue-integrable functions. But the function that is constructed in this example is not Lebesgue-integrable. Its improper Riemann integral exists. That is a different property that does not imply Lebesgue-integrability.
$endgroup$
4
$begingroup$
This answer is misleading. Lebesgue integration is not even mentioned in the context of this exercise on Rudin, not to mention the fact that the very first sentence leaves itself quite open to the interpretation that the affirmation "$f$ integrable $implies$ $|f|$ integrable" only holds for Lebesgue integration, which is not true. It holds for Riemann integration as well. The issue is that OP is overloading a symbol to mean more than it does.
$endgroup$
– Aloizio Macedo♦
7 hours ago
add a comment |
$begingroup$
The implication $f$ is integrable $Rightarrow$ $|f|$ is integrable is true for Lebesgue-integrable functions. But the function that is constructed in this example is not Lebesgue-integrable. Its improper Riemann integral exists. That is a different property that does not imply Lebesgue-integrability.
$endgroup$
The implication $f$ is integrable $Rightarrow$ $|f|$ is integrable is true for Lebesgue-integrable functions. But the function that is constructed in this example is not Lebesgue-integrable. Its improper Riemann integral exists. That is a different property that does not imply Lebesgue-integrability.
answered 8 hours ago
Hans EnglerHans Engler
11k1 gold badge20 silver badges36 bronze badges
11k1 gold badge20 silver badges36 bronze badges
4
$begingroup$
This answer is misleading. Lebesgue integration is not even mentioned in the context of this exercise on Rudin, not to mention the fact that the very first sentence leaves itself quite open to the interpretation that the affirmation "$f$ integrable $implies$ $|f|$ integrable" only holds for Lebesgue integration, which is not true. It holds for Riemann integration as well. The issue is that OP is overloading a symbol to mean more than it does.
$endgroup$
– Aloizio Macedo♦
7 hours ago
add a comment |
4
$begingroup$
This answer is misleading. Lebesgue integration is not even mentioned in the context of this exercise on Rudin, not to mention the fact that the very first sentence leaves itself quite open to the interpretation that the affirmation "$f$ integrable $implies$ $|f|$ integrable" only holds for Lebesgue integration, which is not true. It holds for Riemann integration as well. The issue is that OP is overloading a symbol to mean more than it does.
$endgroup$
– Aloizio Macedo♦
7 hours ago
4
4
$begingroup$
This answer is misleading. Lebesgue integration is not even mentioned in the context of this exercise on Rudin, not to mention the fact that the very first sentence leaves itself quite open to the interpretation that the affirmation "$f$ integrable $implies$ $|f|$ integrable" only holds for Lebesgue integration, which is not true. It holds for Riemann integration as well. The issue is that OP is overloading a symbol to mean more than it does.
$endgroup$
– Aloizio Macedo♦
7 hours ago
$begingroup$
This answer is misleading. Lebesgue integration is not even mentioned in the context of this exercise on Rudin, not to mention the fact that the very first sentence leaves itself quite open to the interpretation that the affirmation "$f$ integrable $implies$ $|f|$ integrable" only holds for Lebesgue integration, which is not true. It holds for Riemann integration as well. The issue is that OP is overloading a symbol to mean more than it does.
$endgroup$
– Aloizio Macedo♦
7 hours ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3322465%2fclarification-on-integrability%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown