Is the sample correlation always positively correlated with the sample variance? The Next CEO of Stack OverflowGiven known bivariate normal means and variances, update correlation estimate, $P(rho)$, with new data?Where does the correlation come from in the regression coefficient equation for simple regressionCDF of the ratio of two correlated $chi^2$ random variablesIs there a version of the correlation coefficient that is less-sensitive to outliers?Correlation in Distances of Points Within a Circle from Centre and One Other PointHow do I reproduce this distribution (with observed means, sd, kurtosis, skewness and correlation)?Is the formula of covariance right?Is my Correlation reasoning correct?Variance of $Y|x$ from regression lineIn a bivariate normal sample, why is the squared sample correlation Beta distributed?

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?

Why doesn't Shulchan Aruch include the laws of destroying fruit trees?

What did the word "leisure" mean in late 18th Century usage?

Car headlights in a world without electricity

Salesforce opportunity stages

Is it okay to majorly distort historical facts while writing a fiction story?

Why does freezing point matter when picking cooler ice packs?

logical reads on global temp table, but not on session-level temp table

Direct Implications Between USA and UK in Event of No-Deal Brexit

Incomplete cube

Man transported from Alternate World into ours by a Neutrino Detector

Would a grinding machine be a simple and workable propulsion system for an interplanetary spacecraft?

How to find if SQL server backup is encrypted with TDE without restoring the backup

"Eavesdropping" vs "Listen in on"

Another proof that dividing by 0 does not exist -- is it right?

Finitely generated matrix groups whose eigenvalues are all algebraic

Strange use of "whether ... than ..." in official text

pgfplots: How to draw a tangent graph below two others?

Cannot restore registry to default in Windows 10?

Traveling with my 5 year old daughter (as the father) without the mother from Germany to Mexico

What day is it again?

How do I secure a TV wall mount?

Is there a rule of thumb for determining the amount one should accept for of a settlement offer?

How can a day be of 24 hours?



Is the sample correlation always positively correlated with the sample variance?



The Next CEO of Stack OverflowGiven known bivariate normal means and variances, update correlation estimate, $P(rho)$, with new data?Where does the correlation come from in the regression coefficient equation for simple regressionCDF of the ratio of two correlated $chi^2$ random variablesIs there a version of the correlation coefficient that is less-sensitive to outliers?Correlation in Distances of Points Within a Circle from Centre and One Other PointHow do I reproduce this distribution (with observed means, sd, kurtosis, skewness and correlation)?Is the formula of covariance right?Is my Correlation reasoning correct?Variance of $Y|x$ from regression lineIn a bivariate normal sample, why is the squared sample correlation Beta distributed?










3












$begingroup$


The sample correlation $r$ and the sample standard deviation of $X$ (call it $s_X$) seem to be positively correlated if I simulate bivariate normal $X$, $Y$ with a positive true correlation (and seem to be negatively correlated if the true correlation between $X$ and $Y$ is negative). I found this somewhat counterintuitive. Very heuristically, I suppose it reflects the fact that $r$ represents the expected increase in Y (in units of SD(Y)) for a one-SD increase in X, and if we estimate a larger $s_X$, then $r$ reflects the change in Y associated with a larger change in X.



However, I would like to know if $Cov(r, s_x) >0$ for $r>0$ holds in general (at least for the case in which X and Y are bivariate normal and with large n). Letting $sigma$ denote a true SD, we have:



$$Cov(r, s_X) = E [ r s_X] - rho sigma_x$$



$$ approx E Bigg[ fracwidehatCov(X,Y)s_Y Bigg] - fracCov(X,Y)sigma_Y $$



I tried using a Taylor expansion on the first term, but it depends on $Cov(widehatCov(X,Y), s_Y)$, so that’s a dead end. Any ideas?



EDIT



Maybe a better direction would be to try to show that $Cov(widehatbeta, s_X)=0$, where $widehatbeta$ is the OLS coefficient of Y on X. Then we could argue that since $widehatbeta = r fracs_Ys_X$, this implies the desired result. Since $widehatbeta$ is almost like a difference of sample means, maybe we could get the former result using something like the known independence of the sample mean and variance for a normal RV?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
    $endgroup$
    – half-pass
    4 hours ago










  • $begingroup$
    I should probably also note that while I wish this were a homework question, it's not... :)
    $endgroup$
    – half-pass
    4 hours ago






  • 1




    $begingroup$
    Ah, I didn't read the question carefully enough. My apologies.
    $endgroup$
    – jbowman
    4 hours ago










  • $begingroup$
    The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
    $endgroup$
    – Andrew M
    4 hours ago











  • $begingroup$
    It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
    $endgroup$
    – half-pass
    4 hours ago















3












$begingroup$


The sample correlation $r$ and the sample standard deviation of $X$ (call it $s_X$) seem to be positively correlated if I simulate bivariate normal $X$, $Y$ with a positive true correlation (and seem to be negatively correlated if the true correlation between $X$ and $Y$ is negative). I found this somewhat counterintuitive. Very heuristically, I suppose it reflects the fact that $r$ represents the expected increase in Y (in units of SD(Y)) for a one-SD increase in X, and if we estimate a larger $s_X$, then $r$ reflects the change in Y associated with a larger change in X.



However, I would like to know if $Cov(r, s_x) >0$ for $r>0$ holds in general (at least for the case in which X and Y are bivariate normal and with large n). Letting $sigma$ denote a true SD, we have:



$$Cov(r, s_X) = E [ r s_X] - rho sigma_x$$



$$ approx E Bigg[ fracwidehatCov(X,Y)s_Y Bigg] - fracCov(X,Y)sigma_Y $$



I tried using a Taylor expansion on the first term, but it depends on $Cov(widehatCov(X,Y), s_Y)$, so that’s a dead end. Any ideas?



EDIT



Maybe a better direction would be to try to show that $Cov(widehatbeta, s_X)=0$, where $widehatbeta$ is the OLS coefficient of Y on X. Then we could argue that since $widehatbeta = r fracs_Ys_X$, this implies the desired result. Since $widehatbeta$ is almost like a difference of sample means, maybe we could get the former result using something like the known independence of the sample mean and variance for a normal RV?










share|cite|improve this question











$endgroup$











  • $begingroup$
    It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
    $endgroup$
    – half-pass
    4 hours ago










  • $begingroup$
    I should probably also note that while I wish this were a homework question, it's not... :)
    $endgroup$
    – half-pass
    4 hours ago






  • 1




    $begingroup$
    Ah, I didn't read the question carefully enough. My apologies.
    $endgroup$
    – jbowman
    4 hours ago










  • $begingroup$
    The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
    $endgroup$
    – Andrew M
    4 hours ago











  • $begingroup$
    It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
    $endgroup$
    – half-pass
    4 hours ago













3












3








3





$begingroup$


The sample correlation $r$ and the sample standard deviation of $X$ (call it $s_X$) seem to be positively correlated if I simulate bivariate normal $X$, $Y$ with a positive true correlation (and seem to be negatively correlated if the true correlation between $X$ and $Y$ is negative). I found this somewhat counterintuitive. Very heuristically, I suppose it reflects the fact that $r$ represents the expected increase in Y (in units of SD(Y)) for a one-SD increase in X, and if we estimate a larger $s_X$, then $r$ reflects the change in Y associated with a larger change in X.



However, I would like to know if $Cov(r, s_x) >0$ for $r>0$ holds in general (at least for the case in which X and Y are bivariate normal and with large n). Letting $sigma$ denote a true SD, we have:



$$Cov(r, s_X) = E [ r s_X] - rho sigma_x$$



$$ approx E Bigg[ fracwidehatCov(X,Y)s_Y Bigg] - fracCov(X,Y)sigma_Y $$



I tried using a Taylor expansion on the first term, but it depends on $Cov(widehatCov(X,Y), s_Y)$, so that’s a dead end. Any ideas?



EDIT



Maybe a better direction would be to try to show that $Cov(widehatbeta, s_X)=0$, where $widehatbeta$ is the OLS coefficient of Y on X. Then we could argue that since $widehatbeta = r fracs_Ys_X$, this implies the desired result. Since $widehatbeta$ is almost like a difference of sample means, maybe we could get the former result using something like the known independence of the sample mean and variance for a normal RV?










share|cite|improve this question











$endgroup$




The sample correlation $r$ and the sample standard deviation of $X$ (call it $s_X$) seem to be positively correlated if I simulate bivariate normal $X$, $Y$ with a positive true correlation (and seem to be negatively correlated if the true correlation between $X$ and $Y$ is negative). I found this somewhat counterintuitive. Very heuristically, I suppose it reflects the fact that $r$ represents the expected increase in Y (in units of SD(Y)) for a one-SD increase in X, and if we estimate a larger $s_X$, then $r$ reflects the change in Y associated with a larger change in X.



However, I would like to know if $Cov(r, s_x) >0$ for $r>0$ holds in general (at least for the case in which X and Y are bivariate normal and with large n). Letting $sigma$ denote a true SD, we have:



$$Cov(r, s_X) = E [ r s_X] - rho sigma_x$$



$$ approx E Bigg[ fracwidehatCov(X,Y)s_Y Bigg] - fracCov(X,Y)sigma_Y $$



I tried using a Taylor expansion on the first term, but it depends on $Cov(widehatCov(X,Y), s_Y)$, so that’s a dead end. Any ideas?



EDIT



Maybe a better direction would be to try to show that $Cov(widehatbeta, s_X)=0$, where $widehatbeta$ is the OLS coefficient of Y on X. Then we could argue that since $widehatbeta = r fracs_Ys_X$, this implies the desired result. Since $widehatbeta$ is almost like a difference of sample means, maybe we could get the former result using something like the known independence of the sample mean and variance for a normal RV?







correlation covariance independence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







half-pass

















asked 5 hours ago









half-passhalf-pass

1,43441931




1,43441931











  • $begingroup$
    It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
    $endgroup$
    – half-pass
    4 hours ago










  • $begingroup$
    I should probably also note that while I wish this were a homework question, it's not... :)
    $endgroup$
    – half-pass
    4 hours ago






  • 1




    $begingroup$
    Ah, I didn't read the question carefully enough. My apologies.
    $endgroup$
    – jbowman
    4 hours ago










  • $begingroup$
    The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
    $endgroup$
    – Andrew M
    4 hours ago











  • $begingroup$
    It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
    $endgroup$
    – half-pass
    4 hours ago
















  • $begingroup$
    It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
    $endgroup$
    – half-pass
    4 hours ago










  • $begingroup$
    I should probably also note that while I wish this were a homework question, it's not... :)
    $endgroup$
    – half-pass
    4 hours ago






  • 1




    $begingroup$
    Ah, I didn't read the question carefully enough. My apologies.
    $endgroup$
    – jbowman
    4 hours ago










  • $begingroup$
    The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
    $endgroup$
    – Andrew M
    4 hours ago











  • $begingroup$
    It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
    $endgroup$
    – half-pass
    4 hours ago















$begingroup$
It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
$endgroup$
– half-pass
4 hours ago




$begingroup$
It would be unchanged. Hmm. I'm afraid I don't yet see the relevance, though.
$endgroup$
– half-pass
4 hours ago












$begingroup$
I should probably also note that while I wish this were a homework question, it's not... :)
$endgroup$
– half-pass
4 hours ago




$begingroup$
I should probably also note that while I wish this were a homework question, it's not... :)
$endgroup$
– half-pass
4 hours ago




1




1




$begingroup$
Ah, I didn't read the question carefully enough. My apologies.
$endgroup$
– jbowman
4 hours ago




$begingroup$
Ah, I didn't read the question carefully enough. My apologies.
$endgroup$
– jbowman
4 hours ago












$begingroup$
The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
$endgroup$
– Andrew M
4 hours ago





$begingroup$
The first equality in your calculation is not correct. $s_x = sqrts^2_x$ is consistent for the standard deviation, but is not unbiased: en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation
$endgroup$
– Andrew M
4 hours ago













$begingroup$
It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
$endgroup$
– half-pass
4 hours ago




$begingroup$
It's extremely close to unbiased for large n, though -- the rule-of-thumb correction factor for a normal RV is (n - 1.5) vs. (n-1).
$endgroup$
– half-pass
4 hours ago










2 Answers
2






active

oldest

votes


















1












$begingroup$

It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
    $endgroup$
    – half-pass
    3 hours ago


















1












$begingroup$

Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



enter image description here






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f400643%2fis-the-sample-correlation-always-positively-correlated-with-the-sample-variance%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



    For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
      $endgroup$
      – half-pass
      3 hours ago















    1












    $begingroup$

    It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



    For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
      $endgroup$
      – half-pass
      3 hours ago













    1












    1








    1





    $begingroup$

    It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



    For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.






    share|cite|improve this answer









    $endgroup$



    It will depend on the joint distribution. For the example you mention, the bivariate (zero-mean) Normal distribution is characterized by the $rho, sigma_x, sigma_y$. It follows that one can have all possible combinations of values of these three parameters, implying that no relation between $rho$ and the standard deviations can be established.



    For other bivariate distributions, the correlation coefficient may be fundamentally a function of the standard deviations (essentially both will be functions of more primitive parameters), in which case one can examine whether a monotonic relation exists.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 3 hours ago









    Alecos PapadopoulosAlecos Papadopoulos

    42.8k297197




    42.8k297197











    • $begingroup$
      I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
      $endgroup$
      – half-pass
      3 hours ago
















    • $begingroup$
      I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
      $endgroup$
      – half-pass
      3 hours ago















    $begingroup$
    I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
    $endgroup$
    – half-pass
    3 hours ago




    $begingroup$
    I understand that the three parameters can have arbitrary relationships for the BVN distribution, but I don't think it follows that the sample estimates of these are asymptotically independent.
    $endgroup$
    – half-pass
    3 hours ago













    1












    $begingroup$

    Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



    enter image description here






    share|cite|improve this answer









    $endgroup$

















      1












      $begingroup$

      Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



      enter image description here






      share|cite|improve this answer









      $endgroup$















        1












        1








        1





        $begingroup$

        Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



        enter image description here






        share|cite|improve this answer









        $endgroup$



        Yes, it does hold asymptotically regardless of the distribution of X and Y. I was on the right track with the Taylor expansion; I just needed to make a symmetry argument:



        enter image description here







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 2 hours ago









        half-passhalf-pass

        1,43441931




        1,43441931



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f400643%2fis-the-sample-correlation-always-positively-correlated-with-the-sample-variance%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

            Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

            Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її