Vector calculus integration identity problem The Next CEO of Stack Overflow$LaTeX$ format copy problemNumerical-Symbolical Integration (Calculus)Is it possible to do vector calculus in Mathematica?Dipolar magnetic field lines inside a cylinderComparing unit normal definition in calculus with FrenetSerretSystemNon-Newtonian calculusSymbolic representation of vector functionmatrix calculus with types (similar to matrixcalculus.org)How do I verify a vector identity using Mathematica?Einstein summation convention for symbolic vector calculusVector calculus with index notation
How did Beeri the Hittite come up with naming his daughter Yehudit?
Why is information "lost" when it got into a black hole?
Why did early computer designers eschew integers?
Is French Guiana a (hard) EU border?
Is there a difference between "Fahrstuhl" and "Aufzug"?
Strange use of "whether ... than ..." in official text
What are the unusually-enlarged wing sections on this P-38 Lightning?
free fall ellipse or parabola?
Is it okay to majorly distort historical facts while writing a fiction story?
Point distance program written without a framework
What would be the main consequences for a country leaving the WTO?
Is it ever safe to open a suspicious HTML file (e.g. email attachment)?
What connection does MS Office have to Netscape Navigator?
Is dried pee considered dirt?
Purpose of level-shifter with same in and out voltages
Help/tips for a first time writer?
How to Implement Deterministic Encryption Safely in .NET
What is the process for purifying your home if you believe it may have been previously used for pagan worship?
Does higher Oxidation/ reduction potential translate to higher energy storage in battery?
Film where the government was corrupt with aliens, people sent to kill aliens are given rigged visors not showing the right aliens
Help! I cannot understand this game’s notations!
Is there an equivalent of cd - for cp or mv
From jafe to El-Guest
If Nick Fury and Coulson already knew about aliens (Kree and Skrull) why did they wait until Thor's appearance to start making weapons?
Vector calculus integration identity problem
The Next CEO of Stack Overflow$LaTeX$ format copy problemNumerical-Symbolical Integration (Calculus)Is it possible to do vector calculus in Mathematica?Dipolar magnetic field lines inside a cylinderComparing unit normal definition in calculus with FrenetSerretSystemNon-Newtonian calculusSymbolic representation of vector functionmatrix calculus with types (similar to matrixcalculus.org)How do I verify a vector identity using Mathematica?Einstein summation convention for symbolic vector calculusVector calculus with index notation
$begingroup$
This is a follow up from another post. I was using the integration symbols available in the Basic Math Assistant palette.
I am new to vector calculus operations. There is a known identity found in my textbook.
$$qquad int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$
I have no idea how to do this type of integration. This is what I tried, but it returns a disaster:
Integrate[s*(Dot[s, A]), s, 0, 4 π]
Also without success:
Integrate[Sin[θ], Cos[θ]*(Dot[Sin[θ], Cos[θ], a1, a2]), θ, 0, 4 π]
It is obvious that I am doing something fundamentally not correct. I go to the documentation on Vector Calculus, but it does not offer much in substance or examples. How do you enter the integral expression shown above in order to return the identity in the right?
Update
In response to comments, here is a copy of the text. This is from page 10 of Optical-Thermal Response of Laser-Irradiated Tissue.
$omega$ is the surface area of a sphere in steradians. $hat s$ is the directional vector of a pencil of radiation located inside the sphere
symbolic vector-calculus
$endgroup$
|
show 3 more comments
$begingroup$
This is a follow up from another post. I was using the integration symbols available in the Basic Math Assistant palette.
I am new to vector calculus operations. There is a known identity found in my textbook.
$$qquad int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$
I have no idea how to do this type of integration. This is what I tried, but it returns a disaster:
Integrate[s*(Dot[s, A]), s, 0, 4 π]
Also without success:
Integrate[Sin[θ], Cos[θ]*(Dot[Sin[θ], Cos[θ], a1, a2]), θ, 0, 4 π]
It is obvious that I am doing something fundamentally not correct. I go to the documentation on Vector Calculus, but it does not offer much in substance or examples. How do you enter the integral expression shown above in order to return the identity in the right?
Update
In response to comments, here is a copy of the text. This is from page 10 of Optical-Thermal Response of Laser-Irradiated Tissue.
$omega$ is the surface area of a sphere in steradians. $hat s$ is the directional vector of a pencil of radiation located inside the sphere
symbolic vector-calculus
$endgroup$
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
$begingroup$
Here's my guess:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
|
show 3 more comments
$begingroup$
This is a follow up from another post. I was using the integration symbols available in the Basic Math Assistant palette.
I am new to vector calculus operations. There is a known identity found in my textbook.
$$qquad int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$
I have no idea how to do this type of integration. This is what I tried, but it returns a disaster:
Integrate[s*(Dot[s, A]), s, 0, 4 π]
Also without success:
Integrate[Sin[θ], Cos[θ]*(Dot[Sin[θ], Cos[θ], a1, a2]), θ, 0, 4 π]
It is obvious that I am doing something fundamentally not correct. I go to the documentation on Vector Calculus, but it does not offer much in substance or examples. How do you enter the integral expression shown above in order to return the identity in the right?
Update
In response to comments, here is a copy of the text. This is from page 10 of Optical-Thermal Response of Laser-Irradiated Tissue.
$omega$ is the surface area of a sphere in steradians. $hat s$ is the directional vector of a pencil of radiation located inside the sphere
symbolic vector-calculus
$endgroup$
This is a follow up from another post. I was using the integration symbols available in the Basic Math Assistant palette.
I am new to vector calculus operations. There is a known identity found in my textbook.
$$qquad int _4 pi hats (hatscdot A) d omega=frac4 pi3A$$
I have no idea how to do this type of integration. This is what I tried, but it returns a disaster:
Integrate[s*(Dot[s, A]), s, 0, 4 π]
Also without success:
Integrate[Sin[θ], Cos[θ]*(Dot[Sin[θ], Cos[θ], a1, a2]), θ, 0, 4 π]
It is obvious that I am doing something fundamentally not correct. I go to the documentation on Vector Calculus, but it does not offer much in substance or examples. How do you enter the integral expression shown above in order to return the identity in the right?
Update
In response to comments, here is a copy of the text. This is from page 10 of Optical-Thermal Response of Laser-Irradiated Tissue.
$omega$ is the surface area of a sphere in steradians. $hat s$ is the directional vector of a pencil of radiation located inside the sphere
symbolic vector-calculus
symbolic vector-calculus
edited 28 mins ago
J. M. is slightly pensive♦
98.8k10311467
98.8k10311467
asked 3 hours ago
Jose Enrique CalderonJose Enrique Calderon
1,063718
1,063718
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
$begingroup$
Here's my guess:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
|
show 3 more comments
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
$begingroup$
Here's my guess:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
2
$begingroup$
Here's my guess:
With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
Here's my guess:
With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this: With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago
|
show 3 more comments
1 Answer
1
active
oldest
votes
$begingroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
$endgroup$
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194347%2fvector-calculus-integration-identity-problem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
$endgroup$
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
$begingroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
$endgroup$
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
$begingroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
$endgroup$
Here's my guess:
With[s = x, y, z,
A = A1, A2, A3, Integrate[s (s.A), s ∈ Sphere[]] ]
(* (4 A1 π)/3, (4 A2 π)/3, (4 A3 π)/3 *)
--- or this:
With[s = x, y, z, A = A1, A2, A3,
Integrate[s (s.A), s ∈ Sphere[]] == 4 Pi/3 A ]
(* True *)
answered 2 hours ago
Michael E2Michael E2
150k12203482
150k12203482
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
@Jose The syntaxs, 0, 4 Pi
already implies one-dimensionals
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can useRegionIntersection[]
withSphere[]
and eitherConicHullRegion[]
orHalfSpace[]
.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
$begingroup$
Why it simply does not work with limits of integration s,0,4Pi
$endgroup$
– Jose Enrique Calderon
2 hours ago
2
2
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@Jose, the author was being lazy with the limits (basically, shorter than saying "integrate over the whole area of the unit sphere"). It is fine to be lazy in mathematics, but not so much when programming.
$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
$begingroup$
@J.M. is slightly pensive Ok.. but why Mathematica function proposed in the answear does not work with With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s,0,4Pi] ]
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
1
$begingroup$
@Jose The syntax
s, 0, 4 Pi
already implies one-dimensional s
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@Jose The syntax
s, 0, 4 Pi
already implies one-dimensional s
from Mathematica's view, while in the "abuse of notation" used in your reference, $hats$ is implied to be a vector.$endgroup$
– J. M. is slightly pensive♦
2 hours ago
1
1
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use
RegionIntersection[]
with Sphere[]
and either ConicHullRegion[]
or HalfSpace[]
.$endgroup$
– J. M. is slightly pensive♦
2 hours ago
$begingroup$
@Jose: the easiest way is that you have to switch to spherical coordinates if you need to integrate across arbitrary angles. If you insist on keeping yourself to regions, you can use
RegionIntersection[]
with Sphere[]
and either ConicHullRegion[]
or HalfSpace[]
.$endgroup$
– J. M. is slightly pensive♦
2 hours ago
|
show 2 more comments
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194347%2fvector-calculus-integration-identity-problem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What are $s$ and $omega$ supposed to be? It might be helpful if you can give an example of the textbook with the formula.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
2
$begingroup$
Here's my guess:
With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] ]
--- or this:With[s = x, y, z, A = A1, A2, A3, Integrate[s (s.A), s [Element] Sphere[]] == 4 Pi/3 A ]
$endgroup$
– Michael E2
3 hours ago
$begingroup$
@Michael, yes, that does seem to be it. This is why people should always define what their variables mean in their formulae.
$endgroup$
– J. M. is slightly pensive♦
3 hours ago
$begingroup$
@Michael E2 please post it as an answear for upvote
$endgroup$
– Jose Enrique Calderon
2 hours ago
1
$begingroup$
I've never seen this author's notation. My guess is that $int_4picdots$ means the integral over the sphere of measure $4pi$, i.e., the unit sphere.
$endgroup$
– Michael E2
2 hours ago