Group by consecutive index numbersFinding the index of an item given a list containing it in PythonAccessing the index in 'for' loops?How do I get the number of elements in a list?Using group by on multiple columnsSelect first row in each GROUP BY group?Group by in LINQUnicodeEncodeError: 'ascii' codec can't encode character u'xa0' in position 20: ordinal not in range(128)Adding new column to existing DataFrame in Python pandas“Large data” work flows using pandasApply multiple functions to multiple groupby columns

Count the number of triangles

Why military weather satellites?

“I hope he visit us more often” Why is this wrong?

What checks exist against overuse of presidential pardons in the USA?

Where does the last newline character come from in this sed's result?

How to investigate an unknown 1.5GB file named "sudo" in my Linux home directory?

Does Dovescape counter Enchantment Creatures?

Why do IR remotes influence AM radios?

How to save money by shopping at a variety of grocery stores?

How did medieval manors handle population growth? Was there room for more fields to be ploughed?

Was a six-engine 747 ever seriously considered by Boeing?

Group by consecutive index numbers

Is rebooked flight considered a delay

Why did Starhopper's exhaust plume become brighter just before landing?

Why does `buck` mean `step-down`?

Are sweatpants frowned upon on flights?

Why does Sauron not permit his followers to use his name?

Is there a word or phrase that means "use other people's wifi or Internet service without consent"?

Create a list of snaking numbers under 50,000

Is "survival" paracord with fire starter strand dangerous

In Endgame, wouldn't Stark have remembered Hulk busting out of the stairwell?

Fixing a blind bolt hole when the first 2-3 threads are ruined?

Spicing up a moment of peace

Is there an in-universe explanation given to the senior Imperial Navy Officers as to why Darth Vader serves Emperor Palpatine?



Group by consecutive index numbers


Finding the index of an item given a list containing it in PythonAccessing the index in 'for' loops?How do I get the number of elements in a list?Using group by on multiple columnsSelect first row in each GROUP BY group?Group by in LINQUnicodeEncodeError: 'ascii' codec can't encode character u'xa0' in position 20: ordinal not in range(128)Adding new column to existing DataFrame in Python pandas“Large data” work flows using pandasApply multiple functions to multiple groupby columns






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








7















I was wondering if there is a way to groupby consecutive index numbers and move the groups in different columns. Here is an example of the DataFrame I'm using:



 0
0 19218.965703
1 19247.621650
2 19232.651322
9 19279.216956
10 19330.087371
11 19304.316973


And my idea is to gruoup by sequential index numbers and get something like this:



 0 1
0 19218.965703 19279.216956
1 19247.621650 19330.087371
2 19232.651322 19304.316973


Ive been trying to split my data by blocks of 3 and then groupby but I was looking more about something that can be used to group and rearrange sequential index numbers.
Thank you!










share|improve this question






























    7















    I was wondering if there is a way to groupby consecutive index numbers and move the groups in different columns. Here is an example of the DataFrame I'm using:



     0
    0 19218.965703
    1 19247.621650
    2 19232.651322
    9 19279.216956
    10 19330.087371
    11 19304.316973


    And my idea is to gruoup by sequential index numbers and get something like this:



     0 1
    0 19218.965703 19279.216956
    1 19247.621650 19330.087371
    2 19232.651322 19304.316973


    Ive been trying to split my data by blocks of 3 and then groupby but I was looking more about something that can be used to group and rearrange sequential index numbers.
    Thank you!










    share|improve this question


























      7












      7








      7


      1






      I was wondering if there is a way to groupby consecutive index numbers and move the groups in different columns. Here is an example of the DataFrame I'm using:



       0
      0 19218.965703
      1 19247.621650
      2 19232.651322
      9 19279.216956
      10 19330.087371
      11 19304.316973


      And my idea is to gruoup by sequential index numbers and get something like this:



       0 1
      0 19218.965703 19279.216956
      1 19247.621650 19330.087371
      2 19232.651322 19304.316973


      Ive been trying to split my data by blocks of 3 and then groupby but I was looking more about something that can be used to group and rearrange sequential index numbers.
      Thank you!










      share|improve this question














      I was wondering if there is a way to groupby consecutive index numbers and move the groups in different columns. Here is an example of the DataFrame I'm using:



       0
      0 19218.965703
      1 19247.621650
      2 19232.651322
      9 19279.216956
      10 19330.087371
      11 19304.316973


      And my idea is to gruoup by sequential index numbers and get something like this:



       0 1
      0 19218.965703 19279.216956
      1 19247.621650 19330.087371
      2 19232.651322 19304.316973


      Ive been trying to split my data by blocks of 3 and then groupby but I was looking more about something that can be used to group and rearrange sequential index numbers.
      Thank you!







      python pandas numpy group-by






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 8 hours ago









      GiuseppeGiuseppe

      1016 bronze badges




      1016 bronze badges

























          4 Answers
          4






          active

          oldest

          votes


















          9















          Here is one way:



          from more_itertools import consecutive_groups
          final=pd.concat([df.loc[i].reset_index(drop=True)
          for i in consecutive_groups(df.index)],axis=1)
          final.columns=range(len(final.columns))
          print(final)



           0 1
          0 19218.965703 19279.216956
          1 19247.621650 19330.087371
          2 19232.651322 19304.316973





          share|improve this answer




















          • 1





            I like the more_itertools solution! Thank you. With 3 answers you guys covered all the possible and elegant solutions!!

            – Giuseppe
            8 hours ago



















          6















          This is a groupby + pivot_table




          m = df.index.to_series().diff().ne(1).cumsum()

          (df.assign(key=df.groupby(m).cumcount())
          .pivot_table(index='key', columns=m, values=0))




           1 2
          key
          0 19218.965703 19279.216956
          1 19247.621650 19330.087371
          2 19232.651322 19304.316973





          share|improve this answer
































            6















            Create a new pandas.Series with a new pandas.MultiIndex



            a = pd.factorize(df.index - np.arange(len(df)))[0]
            b = df.groupby(a).cumcount()

            pd.Series(df['0'].to_numpy(), [b, a]).unstack()

            0 1
            0 19218.965703 19279.216956
            1 19247.621650 19330.087371
            2 19232.651322 19304.316973



            Similar but with more Numpy



            a = pd.factorize(df.index - np.arange(len(df)))[0]
            b = df.groupby(a).cumcount()

            c = np.empty((b.max() + 1, a.max() + 1), float)
            c.fill(np.nan)
            c[b, a] = np.ravel(df)
            pd.DataFrame(c)

            0 1
            0 19218.965703 19279.216956
            1 19247.621650 19330.087371
            2 19232.651322 19304.316973





            share|improve this answer


































              5















              One way from pandas groupby



              s=df.index.to_series().diff().ne(1).cumsum()
              pd.concat(x: y.reset_index(drop=True) for x, y in df['0'].groupby(s), axis=1)

              Out[786]:
              1 2
              0 19218.965703 19279.216956
              1 19247.621650 19330.087371
              2 19232.651322 19304.316973





              share|improve this answer



























                Your Answer






                StackExchange.ifUsing("editor", function ()
                StackExchange.using("externalEditor", function ()
                StackExchange.using("snippets", function ()
                StackExchange.snippets.init();
                );
                );
                , "code-snippets");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "1"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );













                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f57713712%2fgroup-by-consecutive-index-numbers%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                9















                Here is one way:



                from more_itertools import consecutive_groups
                final=pd.concat([df.loc[i].reset_index(drop=True)
                for i in consecutive_groups(df.index)],axis=1)
                final.columns=range(len(final.columns))
                print(final)



                 0 1
                0 19218.965703 19279.216956
                1 19247.621650 19330.087371
                2 19232.651322 19304.316973





                share|improve this answer




















                • 1





                  I like the more_itertools solution! Thank you. With 3 answers you guys covered all the possible and elegant solutions!!

                  – Giuseppe
                  8 hours ago
















                9















                Here is one way:



                from more_itertools import consecutive_groups
                final=pd.concat([df.loc[i].reset_index(drop=True)
                for i in consecutive_groups(df.index)],axis=1)
                final.columns=range(len(final.columns))
                print(final)



                 0 1
                0 19218.965703 19279.216956
                1 19247.621650 19330.087371
                2 19232.651322 19304.316973





                share|improve this answer




















                • 1





                  I like the more_itertools solution! Thank you. With 3 answers you guys covered all the possible and elegant solutions!!

                  – Giuseppe
                  8 hours ago














                9














                9










                9









                Here is one way:



                from more_itertools import consecutive_groups
                final=pd.concat([df.loc[i].reset_index(drop=True)
                for i in consecutive_groups(df.index)],axis=1)
                final.columns=range(len(final.columns))
                print(final)



                 0 1
                0 19218.965703 19279.216956
                1 19247.621650 19330.087371
                2 19232.651322 19304.316973





                share|improve this answer













                Here is one way:



                from more_itertools import consecutive_groups
                final=pd.concat([df.loc[i].reset_index(drop=True)
                for i in consecutive_groups(df.index)],axis=1)
                final.columns=range(len(final.columns))
                print(final)



                 0 1
                0 19218.965703 19279.216956
                1 19247.621650 19330.087371
                2 19232.651322 19304.316973






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 8 hours ago









                anky_91anky_91

                23.8k5 gold badges12 silver badges29 bronze badges




                23.8k5 gold badges12 silver badges29 bronze badges










                • 1





                  I like the more_itertools solution! Thank you. With 3 answers you guys covered all the possible and elegant solutions!!

                  – Giuseppe
                  8 hours ago













                • 1





                  I like the more_itertools solution! Thank you. With 3 answers you guys covered all the possible and elegant solutions!!

                  – Giuseppe
                  8 hours ago








                1




                1





                I like the more_itertools solution! Thank you. With 3 answers you guys covered all the possible and elegant solutions!!

                – Giuseppe
                8 hours ago






                I like the more_itertools solution! Thank you. With 3 answers you guys covered all the possible and elegant solutions!!

                – Giuseppe
                8 hours ago














                6















                This is a groupby + pivot_table




                m = df.index.to_series().diff().ne(1).cumsum()

                (df.assign(key=df.groupby(m).cumcount())
                .pivot_table(index='key', columns=m, values=0))




                 1 2
                key
                0 19218.965703 19279.216956
                1 19247.621650 19330.087371
                2 19232.651322 19304.316973





                share|improve this answer





























                  6















                  This is a groupby + pivot_table




                  m = df.index.to_series().diff().ne(1).cumsum()

                  (df.assign(key=df.groupby(m).cumcount())
                  .pivot_table(index='key', columns=m, values=0))




                   1 2
                  key
                  0 19218.965703 19279.216956
                  1 19247.621650 19330.087371
                  2 19232.651322 19304.316973





                  share|improve this answer



























                    6














                    6










                    6









                    This is a groupby + pivot_table




                    m = df.index.to_series().diff().ne(1).cumsum()

                    (df.assign(key=df.groupby(m).cumcount())
                    .pivot_table(index='key', columns=m, values=0))




                     1 2
                    key
                    0 19218.965703 19279.216956
                    1 19247.621650 19330.087371
                    2 19232.651322 19304.316973





                    share|improve this answer













                    This is a groupby + pivot_table




                    m = df.index.to_series().diff().ne(1).cumsum()

                    (df.assign(key=df.groupby(m).cumcount())
                    .pivot_table(index='key', columns=m, values=0))




                     1 2
                    key
                    0 19218.965703 19279.216956
                    1 19247.621650 19330.087371
                    2 19232.651322 19304.316973






                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered 8 hours ago









                    user3483203user3483203

                    38.1k8 gold badges32 silver badges62 bronze badges




                    38.1k8 gold badges32 silver badges62 bronze badges
























                        6















                        Create a new pandas.Series with a new pandas.MultiIndex



                        a = pd.factorize(df.index - np.arange(len(df)))[0]
                        b = df.groupby(a).cumcount()

                        pd.Series(df['0'].to_numpy(), [b, a]).unstack()

                        0 1
                        0 19218.965703 19279.216956
                        1 19247.621650 19330.087371
                        2 19232.651322 19304.316973



                        Similar but with more Numpy



                        a = pd.factorize(df.index - np.arange(len(df)))[0]
                        b = df.groupby(a).cumcount()

                        c = np.empty((b.max() + 1, a.max() + 1), float)
                        c.fill(np.nan)
                        c[b, a] = np.ravel(df)
                        pd.DataFrame(c)

                        0 1
                        0 19218.965703 19279.216956
                        1 19247.621650 19330.087371
                        2 19232.651322 19304.316973





                        share|improve this answer































                          6















                          Create a new pandas.Series with a new pandas.MultiIndex



                          a = pd.factorize(df.index - np.arange(len(df)))[0]
                          b = df.groupby(a).cumcount()

                          pd.Series(df['0'].to_numpy(), [b, a]).unstack()

                          0 1
                          0 19218.965703 19279.216956
                          1 19247.621650 19330.087371
                          2 19232.651322 19304.316973



                          Similar but with more Numpy



                          a = pd.factorize(df.index - np.arange(len(df)))[0]
                          b = df.groupby(a).cumcount()

                          c = np.empty((b.max() + 1, a.max() + 1), float)
                          c.fill(np.nan)
                          c[b, a] = np.ravel(df)
                          pd.DataFrame(c)

                          0 1
                          0 19218.965703 19279.216956
                          1 19247.621650 19330.087371
                          2 19232.651322 19304.316973





                          share|improve this answer





























                            6














                            6










                            6









                            Create a new pandas.Series with a new pandas.MultiIndex



                            a = pd.factorize(df.index - np.arange(len(df)))[0]
                            b = df.groupby(a).cumcount()

                            pd.Series(df['0'].to_numpy(), [b, a]).unstack()

                            0 1
                            0 19218.965703 19279.216956
                            1 19247.621650 19330.087371
                            2 19232.651322 19304.316973



                            Similar but with more Numpy



                            a = pd.factorize(df.index - np.arange(len(df)))[0]
                            b = df.groupby(a).cumcount()

                            c = np.empty((b.max() + 1, a.max() + 1), float)
                            c.fill(np.nan)
                            c[b, a] = np.ravel(df)
                            pd.DataFrame(c)

                            0 1
                            0 19218.965703 19279.216956
                            1 19247.621650 19330.087371
                            2 19232.651322 19304.316973





                            share|improve this answer















                            Create a new pandas.Series with a new pandas.MultiIndex



                            a = pd.factorize(df.index - np.arange(len(df)))[0]
                            b = df.groupby(a).cumcount()

                            pd.Series(df['0'].to_numpy(), [b, a]).unstack()

                            0 1
                            0 19218.965703 19279.216956
                            1 19247.621650 19330.087371
                            2 19232.651322 19304.316973



                            Similar but with more Numpy



                            a = pd.factorize(df.index - np.arange(len(df)))[0]
                            b = df.groupby(a).cumcount()

                            c = np.empty((b.max() + 1, a.max() + 1), float)
                            c.fill(np.nan)
                            c[b, a] = np.ravel(df)
                            pd.DataFrame(c)

                            0 1
                            0 19218.965703 19279.216956
                            1 19247.621650 19330.087371
                            2 19232.651322 19304.316973






                            share|improve this answer














                            share|improve this answer



                            share|improve this answer








                            edited 8 hours ago

























                            answered 8 hours ago









                            piRSquaredpiRSquared

                            177k26 gold badges195 silver badges352 bronze badges




                            177k26 gold badges195 silver badges352 bronze badges
























                                5















                                One way from pandas groupby



                                s=df.index.to_series().diff().ne(1).cumsum()
                                pd.concat(x: y.reset_index(drop=True) for x, y in df['0'].groupby(s), axis=1)

                                Out[786]:
                                1 2
                                0 19218.965703 19279.216956
                                1 19247.621650 19330.087371
                                2 19232.651322 19304.316973





                                share|improve this answer





























                                  5















                                  One way from pandas groupby



                                  s=df.index.to_series().diff().ne(1).cumsum()
                                  pd.concat(x: y.reset_index(drop=True) for x, y in df['0'].groupby(s), axis=1)

                                  Out[786]:
                                  1 2
                                  0 19218.965703 19279.216956
                                  1 19247.621650 19330.087371
                                  2 19232.651322 19304.316973





                                  share|improve this answer



























                                    5














                                    5










                                    5









                                    One way from pandas groupby



                                    s=df.index.to_series().diff().ne(1).cumsum()
                                    pd.concat(x: y.reset_index(drop=True) for x, y in df['0'].groupby(s), axis=1)

                                    Out[786]:
                                    1 2
                                    0 19218.965703 19279.216956
                                    1 19247.621650 19330.087371
                                    2 19232.651322 19304.316973





                                    share|improve this answer













                                    One way from pandas groupby



                                    s=df.index.to_series().diff().ne(1).cumsum()
                                    pd.concat(x: y.reset_index(drop=True) for x, y in df['0'].groupby(s), axis=1)

                                    Out[786]:
                                    1 2
                                    0 19218.965703 19279.216956
                                    1 19247.621650 19330.087371
                                    2 19232.651322 19304.316973






                                    share|improve this answer












                                    share|improve this answer



                                    share|improve this answer










                                    answered 8 hours ago









                                    WeNYoBenWeNYoBen

                                    156k8 gold badges54 silver badges84 bronze badges




                                    156k8 gold badges54 silver badges84 bronze badges






























                                        draft saved

                                        draft discarded
















































                                        Thanks for contributing an answer to Stack Overflow!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f57713712%2fgroup-by-consecutive-index-numbers%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                                        Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                                        199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單