What loss function to use when labels are probabilities? Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Why would neural networks be a particularly good framework for “embodied AI”?Understanding GAN Loss functionHelp with implementing Q-learning for a feedfoward network playing a video gameHow do I implement softmax forward propagation and backpropagation to replace sigmoid in a neural network?Gradient of hinge loss functionHow to understand marginal loglikelihood objective function as loss function (explanation of an article)?What is batch / batch size in neural networks?Comparing and studying Loss FunctionsLoss function spikesPredicting sine using LSTM: Small output range and delayed output?

Blender game recording at the wrong time

How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time

No baking right

How to say 'striped' in Latin

Why does this iterative way of solving of equation work?

Mortgage adviser recommends a longer term than necessary combined with overpayments

Unexpected result with right shift after bitwise negation

Slither Like a Snake

How to set letter above or below the symbol?

What items from the Roman-age tech-level could be used to deter all creatures from entering a small area?

Who can trigger ship-wide alerts in Star Trek?

Why is there no army of Iron-Mans in the MCU?

What did Darwin mean by 'squib' here?

What computer would be fastest for Mathematica Home Edition?

Complexity of many constant time steps with occasional logarithmic steps

Can I throw a longsword at someone?

What is the largest species of polychaete?

Single author papers against my advisor's will?

Statistical model of ligand substitution

Active filter with series inductor and resistor - do these exist?

What is the electric potential inside a point charge?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Passing functions in C++

Writing Thesis: Copying from published papers



What loss function to use when labels are probabilities?



Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Why would neural networks be a particularly good framework for “embodied AI”?Understanding GAN Loss functionHelp with implementing Q-learning for a feedfoward network playing a video gameHow do I implement softmax forward propagation and backpropagation to replace sigmoid in a neural network?Gradient of hinge loss functionHow to understand marginal loglikelihood objective function as loss function (explanation of an article)?What is batch / batch size in neural networks?Comparing and studying Loss FunctionsLoss function spikesPredicting sine using LSTM: Small output range and delayed output?



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



Would something like MSE (after applying softmax) make sense, or is there a better loss function?










share|improve this question







New contributor




Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$


















    2












    $begingroup$


    What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



    It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



    Would something like MSE (after applying softmax) make sense, or is there a better loss function?










    share|improve this question







    New contributor




    Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      2












      2








      2





      $begingroup$


      What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



      It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



      Would something like MSE (after applying softmax) make sense, or is there a better loss function?










      share|improve this question







      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].



      It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.



      Would something like MSE (after applying softmax) make sense, or is there a better loss function?







      neural-networks loss-functions probability-distribution






      share|improve this question







      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 6 hours ago









      Thomas JohnsonThomas Johnson

      1133




      1133




      New contributor




      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Thomas Johnson is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



          You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



          $$H(p,q)=-sum_xin X p(x) log q(x).$$
          $ $



          Note that one-hot labels would mean that
          $$
          p(x) =
          begincases
          1 & textif x text is the true label\
          0 & textotherwise
          endcases$$



          which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



          $$H(p,q) = -log q(x_label)$$






          share|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "658"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11816%2fwhat-loss-function-to-use-when-labels-are-probabilities%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



            You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



            $$H(p,q)=-sum_xin X p(x) log q(x).$$
            $ $



            Note that one-hot labels would mean that
            $$
            p(x) =
            begincases
            1 & textif x text is the true label\
            0 & textotherwise
            endcases$$



            which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



            $$H(p,q) = -log q(x_label)$$






            share|improve this answer









            $endgroup$

















              3












              $begingroup$

              Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



              You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



              $$H(p,q)=-sum_xin X p(x) log q(x).$$
              $ $



              Note that one-hot labels would mean that
              $$
              p(x) =
              begincases
              1 & textif x text is the true label\
              0 & textotherwise
              endcases$$



              which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



              $$H(p,q) = -log q(x_label)$$






              share|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



                You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



                $$H(p,q)=-sum_xin X p(x) log q(x).$$
                $ $



                Note that one-hot labels would mean that
                $$
                p(x) =
                begincases
                1 & textif x text is the true label\
                0 & textotherwise
                endcases$$



                which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



                $$H(p,q) = -log q(x_label)$$






                share|improve this answer









                $endgroup$



                Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.



                You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,



                $$H(p,q)=-sum_xin X p(x) log q(x).$$
                $ $



                Note that one-hot labels would mean that
                $$
                p(x) =
                begincases
                1 & textif x text is the true label\
                0 & textotherwise
                endcases$$



                which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:



                $$H(p,q) = -log q(x_label)$$







                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered 6 hours ago









                Philip RaeisghasemPhilip Raeisghasem

                988119




                988119




















                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.












                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.











                    Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Artificial Intelligence Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11816%2fwhat-loss-function-to-use-when-labels-are-probabilities%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                    Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                    199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單