Determine whether or not $sum_k=1^inftyleft(frac kk+1right)^k^2$ converges. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determine whether the series $sum_n=1^infty left ( fracpi2-arctan n right )$ converges or not.How to determine whether $sum_n=1^inftylnleft(fracn+2n+1right)$ converges or diverges.Determine whether the series $sum_n=1^+inftyleft(1+frac1nright)a_n$ is convergent or divergentConvergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Converge? $sum_k=1^inftyfrac sin left(frac1kright) k $Determine whether the series converges or diverges.Determine whether the series $sum_n=1^inftyleft(fracnn+1right)^n^2$ convergesTo test whether $sum_n=1^inftyfracn+22^n+3sinleft[(n+frac12)piright]$ convergesDetermining whether the series: $sum_n=1^infty tanleft(frac1nright) $ convergesDetermine the convergence/divergence of $sum_n=1^inftyfraclnn!n^3$

Typsetting diagram chases (with TikZ?)

Why does this iterative way of solving of equation work?

What are the performance impacts of 'functional' Rust?

90's book, teen horror

Fishing simulator

Why use gamma over alpha radiation?

How does modal jazz use chord progressions?

How do I automatically answer y in bash script?

Sorting inherited template fields

When communicating altitude with a '9' in it, should it be pronounced "nine hundred" or "niner hundred"?

AWS IAM: Restrict Console Access to only One Instance

Simulating Exploding Dice

What do you call the holes in a flute?

grandmas drink with lemon juice

Determine whether f is a function, an injection, a surjection

How can players take actions together that are impossible otherwise?

Statistical model of ligand substitution

Is 1 ppb equal to 1 μg/kg?

What would be Julian Assange's expected punishment, on the current English criminal law?

What is the order of Mitzvot in Rambam's Sefer Hamitzvot?

Is there a service that would inform me whenever a new direct route is scheduled from a given airport?

The following signatures were invalid: EXPKEYSIG 1397BC53640DB551

Using "nakedly" instead of "with nothing on"

How is simplicity better than precision and clarity in prose?



Determine whether or not $sum_k=1^inftyleft(frac kk+1right)^k^2$ converges.



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Determine whether the series $sum_n=1^infty left ( fracpi2-arctan n right )$ converges or not.How to determine whether $sum_n=1^inftylnleft(fracn+2n+1right)$ converges or diverges.Determine whether the series $sum_n=1^+inftyleft(1+frac1nright)a_n$ is convergent or divergentConvergence for $sum _n=1^infty :fracsqrt[4]n^2-1sqrtn^4-1$Converge? $sum_k=1^inftyfrac sin left(frac1kright) k $Determine whether the series converges or diverges.Determine whether the series $sum_n=1^inftyleft(fracnn+1right)^n^2$ convergesTo test whether $sum_n=1^inftyfracn+22^n+3sinleft[(n+frac12)piright]$ convergesDetermining whether the series: $sum_n=1^infty tanleft(frac1nright) $ convergesDetermine the convergence/divergence of $sum_n=1^inftyfraclnn!n^3$










1












$begingroup$


$$sum_k=1^inftyleft(frac kk+1right)^k^2$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$











  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    4 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    4 hours ago






  • 1




    $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    4 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
    $endgroup$
    – Mark Viola
    3 hours ago















1












$begingroup$


$$sum_k=1^inftyleft(frac kk+1right)^k^2$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$











  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    4 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    4 hours ago






  • 1




    $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    4 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
    $endgroup$
    – Mark Viola
    3 hours ago













1












1








1





$begingroup$


$$sum_k=1^inftyleft(frac kk+1right)^k^2$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.










share|cite|improve this question











$endgroup$




$$sum_k=1^inftyleft(frac kk+1right)^k^2$$



Determine whether or not the following series converge.
I am not sure what test to use. I am pretty sure I am unable to use ratio test. Maybe comparison or Kummer, or Raabe. However I am not sure how to start it.







sequences-and-series convergence






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 25 mins ago









user21820

40.2k544163




40.2k544163










asked 4 hours ago









MD3MD3

462




462











  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    4 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    4 hours ago






  • 1




    $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    4 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
    $endgroup$
    – Mark Viola
    3 hours ago
















  • $begingroup$
    You have an exponent with $k$. Your instinct should be to remove it with the root test.
    $endgroup$
    – Simply Beautiful Art
    4 hours ago










  • $begingroup$
    Since its squared, do I take the k^2 root
    $endgroup$
    – MD3
    4 hours ago






  • 1




    $begingroup$
    Does the root test say you take the $k^2$-th root?
    $endgroup$
    – Simply Beautiful Art
    4 hours ago






  • 1




    $begingroup$
    For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
    $endgroup$
    – Mark Viola
    3 hours ago















$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
4 hours ago




$begingroup$
You have an exponent with $k$. Your instinct should be to remove it with the root test.
$endgroup$
– Simply Beautiful Art
4 hours ago












$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
4 hours ago




$begingroup$
Since its squared, do I take the k^2 root
$endgroup$
– MD3
4 hours ago




1




1




$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
4 hours ago




$begingroup$
Does the root test say you take the $k^2$-th root?
$endgroup$
– Simply Beautiful Art
4 hours ago




1




1




$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago




$begingroup$
For $kge 1$, we have$$left(frackk+1right)^k^2le e^-k/2$$
$endgroup$
– Mark Viola
3 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



So your series converges!






share|cite|improve this answer











$endgroup$












  • $begingroup$
    How did you know to take the supremum
    $endgroup$
    – MD3
    3 hours ago






  • 1




    $begingroup$
    See the wiki link!
    $endgroup$
    – Chinnapparaj R
    3 hours ago


















1












$begingroup$

Hint: $$left( frackk+1 right)^k sim e^-1 $$






share|cite|improve this answer









$endgroup$




















    1












    $begingroup$

    $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



    $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
    $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
    $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago






      • 1




        $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago















      2












      $begingroup$

      By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago






      • 1




        $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago













      2












      2








      2





      $begingroup$

      By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



      So your series converges!






      share|cite|improve this answer











      $endgroup$



      By Root test, $$limsup_n to infty sqrt[n]left(fracnn+1right)^n^2=limsup_n to infty left(fracnn+1right)^n=limsup_n to infty left(1+frac1nright)^-n=frac1e<1$$



      So your series converges!







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited 3 hours ago

























      answered 3 hours ago









      Chinnapparaj RChinnapparaj R

      6,54021029




      6,54021029











      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago






      • 1




        $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago
















      • $begingroup$
        How did you know to take the supremum
        $endgroup$
        – MD3
        3 hours ago






      • 1




        $begingroup$
        See the wiki link!
        $endgroup$
        – Chinnapparaj R
        3 hours ago















      $begingroup$
      How did you know to take the supremum
      $endgroup$
      – MD3
      3 hours ago




      $begingroup$
      How did you know to take the supremum
      $endgroup$
      – MD3
      3 hours ago




      1




      1




      $begingroup$
      See the wiki link!
      $endgroup$
      – Chinnapparaj R
      3 hours ago




      $begingroup$
      See the wiki link!
      $endgroup$
      – Chinnapparaj R
      3 hours ago











      1












      $begingroup$

      Hint: $$left( frackk+1 right)^k sim e^-1 $$






      share|cite|improve this answer









      $endgroup$

















        1












        $begingroup$

        Hint: $$left( frackk+1 right)^k sim e^-1 $$






        share|cite|improve this answer









        $endgroup$















          1












          1








          1





          $begingroup$

          Hint: $$left( frackk+1 right)^k sim e^-1 $$






          share|cite|improve this answer









          $endgroup$



          Hint: $$left( frackk+1 right)^k sim e^-1 $$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 4 hours ago









          Robert IsraelRobert Israel

          331k23221478




          331k23221478





















              1












              $begingroup$

              $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



              $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
              $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
              $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$






              share|cite|improve this answer









              $endgroup$

















                1












                $begingroup$

                $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



                $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
                $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
                $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$






                share|cite|improve this answer









                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



                  $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
                  $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
                  $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$






                  share|cite|improve this answer









                  $endgroup$



                  $$a_k=left(frac kk+1right)^k^2implies log(a_k)=k^2 logleft(frac kk+1right)$$



                  $$log(a_k+1)-log(a_k)=(k+1)^2 log left(frack+1k+2right)-k^2 log left(frackk+1right)$$ Using Taylor expansions for large $k$
                  $$log(a_k+1)-log(a_k)=-1+frac13 k^2+Oleft(frac1k^3right)$$
                  $$frac a_k+1a_k=e^log(a_k+1)-log(a_k)=frac 1 e left(1+frac13 k^2+Oleft(frac1k^3right)right)to frac 1 e $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 1 hour ago









                  Claude LeiboviciClaude Leibovici

                  126k1158135




                  126k1158135



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3188224%2fdetermine-whether-or-not-sum-k-1-infty-left-frac-kk1-rightk2-conv%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                      Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                      199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單