Solving polynominals equations (relationship of roots)Quadratic equation - $alpha$ and $beta$ RootsTechnique to simplify algebraic calculations on roots of polynomialInterval of Polynomial Root FindingFind $alpha^3 + beta^3$ which are roots of a quadratic equation.sum and product of roots of polynomials: finding equations for rootsSolving two Cubic Equation on their Roots.Finding an equation with related rootsFind the roots of $acx^2-b(c+a)x+(c+a)^2=0$If $3x^2-6x+p=0$ has roots $alpha$ and $beta$, then find a quadratic with roots $(alpha+beta)/alpha$ and $(alpha+beta)/beta$Find the roots of $3x^3-4x-8$

How exactly does Hawking radiation decrease the mass of black holes?

Which big number is bigger?

Philosophical question on logistic regression: why isn't the optimal threshold value trained?

Why did C use the -> operator instead of reusing the . operator?

What term is being referred to with "reflected-sound-of-underground-spirits"?

If a planet has 3 moons, is it possible to have triple Full/New Moons at once?

Solving polynominals equations (relationship of roots)

Is there really no use for MD5 anymore?

Re-entry to Germany after vacation using blue card

"The cow" OR "a cow" OR "cows" in this context

Can someone publish a story that happened to you?

How could Tony Stark make this in Endgame?

Pulling the rope with one hand is as heavy as with two hands?

Is this homebrew Wind Wave spell balanced?

Phrase for the opposite of "foolproof"

How did Captain America manage to do this?

Don’t seats that recline flat defeat the purpose of having seatbelts?

Should the Death Curse affect an undead PC in the Tomb of Annihilation adventure?

How to stop co-workers from teasing me because I know Russian?

What makes accurate emulation of old systems a difficult task?

Why didn't the Space Shuttle bounce back into space as many times as possible so as to lose a lot of kinetic energy up there?

Was there a Viking Exchange as well as a Columbian one?

What's the name of these pliers?

Checks user level and limit the data before saving it to mongoDB



Solving polynominals equations (relationship of roots)


Quadratic equation - $alpha$ and $beta$ RootsTechnique to simplify algebraic calculations on roots of polynomialInterval of Polynomial Root FindingFind $alpha^3 + beta^3$ which are roots of a quadratic equation.sum and product of roots of polynomials: finding equations for rootsSolving two Cubic Equation on their Roots.Finding an equation with related rootsFind the roots of $acx^2-b(c+a)x+(c+a)^2=0$If $3x^2-6x+p=0$ has roots $alpha$ and $beta$, then find a quadratic with roots $(alpha+beta)/alpha$ and $(alpha+beta)/beta$Find the roots of $3x^3-4x-8$













2












$begingroup$



The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$




So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$

And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$



I don't know how to continue evaluating the question.



Note:

The answer I have been given is $-dfrac113$










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    For latex, you use instead of /.
    $endgroup$
    – BadAtGeometry
    1 hour ago















2












$begingroup$



The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$




So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$

And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$



I don't know how to continue evaluating the question.



Note:

The answer I have been given is $-dfrac113$










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    For latex, you use instead of /.
    $endgroup$
    – BadAtGeometry
    1 hour ago













2












2








2


0



$begingroup$



The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$




So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$

And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$



I don't know how to continue evaluating the question.



Note:

The answer I have been given is $-dfrac113$










share|cite|improve this question











$endgroup$





The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$




So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$

And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$



I don't know how to continue evaluating the question.



Note:

The answer I have been given is $-dfrac113$







polynomials roots






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 40 mins ago









Lee David Chung Lin

4,51851342




4,51851342










asked 1 hour ago









Alex Alex

186




186







  • 1




    $begingroup$
    For latex, you use instead of /.
    $endgroup$
    – BadAtGeometry
    1 hour ago












  • 1




    $begingroup$
    For latex, you use instead of /.
    $endgroup$
    – BadAtGeometry
    1 hour ago







1




1




$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago




$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago










4 Answers
4






active

oldest

votes


















2












$begingroup$

$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$



$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$



$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$



$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$



$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$



I think you should be able to take it from there.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
    This simplifies to $$-frac23-3=-frac113$$






    share|cite|improve this answer









    $endgroup$




















      1












      $begingroup$

      Alternatively, you can solve the equation:
      $$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
      alpha =-1, beta =2,omega=3.$$

      Hence:
      $$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
      frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
      frac13-5+1=\
      -frac113.$$






      share|cite|improve this answer









      $endgroup$




















        0












        $begingroup$

        That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.






        share|cite|improve this answer









        $endgroup$













          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          $$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$



          $$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$



          $$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$



          $$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$



          $$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$



          I think you should be able to take it from there.






          share|cite|improve this answer









          $endgroup$

















            2












            $begingroup$

            $$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$



            $$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$



            $$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$



            $$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$



            $$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$



            I think you should be able to take it from there.






            share|cite|improve this answer









            $endgroup$















              2












              2








              2





              $begingroup$

              $$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$



              $$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$



              $$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$



              $$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$



              $$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$



              I think you should be able to take it from there.






              share|cite|improve this answer









              $endgroup$



              $$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$



              $$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$



              $$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$



              $$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$



              $$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$



              I think you should be able to take it from there.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered 1 hour ago









              user1952500user1952500

              1,5351016




              1,5351016





















                  2












                  $begingroup$

                  Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
                  This simplifies to $$-frac23-3=-frac113$$






                  share|cite|improve this answer









                  $endgroup$

















                    2












                    $begingroup$

                    Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
                    This simplifies to $$-frac23-3=-frac113$$






                    share|cite|improve this answer









                    $endgroup$















                      2












                      2








                      2





                      $begingroup$

                      Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
                      This simplifies to $$-frac23-3=-frac113$$






                      share|cite|improve this answer









                      $endgroup$



                      Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
                      This simplifies to $$-frac23-3=-frac113$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered 1 hour ago









                      Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                      79.7k42867




                      79.7k42867





















                          1












                          $begingroup$

                          Alternatively, you can solve the equation:
                          $$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
                          alpha =-1, beta =2,omega=3.$$

                          Hence:
                          $$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
                          frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
                          frac13-5+1=\
                          -frac113.$$






                          share|cite|improve this answer









                          $endgroup$

















                            1












                            $begingroup$

                            Alternatively, you can solve the equation:
                            $$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
                            alpha =-1, beta =2,omega=3.$$

                            Hence:
                            $$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
                            frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
                            frac13-5+1=\
                            -frac113.$$






                            share|cite|improve this answer









                            $endgroup$















                              1












                              1








                              1





                              $begingroup$

                              Alternatively, you can solve the equation:
                              $$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
                              alpha =-1, beta =2,omega=3.$$

                              Hence:
                              $$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
                              frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
                              frac13-5+1=\
                              -frac113.$$






                              share|cite|improve this answer









                              $endgroup$



                              Alternatively, you can solve the equation:
                              $$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
                              alpha =-1, beta =2,omega=3.$$

                              Hence:
                              $$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
                              frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
                              frac13-5+1=\
                              -frac113.$$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered 16 mins ago









                              farruhotafarruhota

                              22.5k2942




                              22.5k2942





















                                  0












                                  $begingroup$

                                  That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.






                                  share|cite|improve this answer









                                  $endgroup$

















                                    0












                                    $begingroup$

                                    That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.






                                    share|cite|improve this answer









                                    $endgroup$















                                      0












                                      0








                                      0





                                      $begingroup$

                                      That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.






                                      share|cite|improve this answer









                                      $endgroup$



                                      That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered 1 hour ago









                                      Chris CusterChris Custer

                                      14.7k3827




                                      14.7k3827



























                                          draft saved

                                          draft discarded
















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid


                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.

                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function ()
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');

                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          Popular posts from this blog

                                          Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                                          Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                                          199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單