Solving polynominals equations (relationship of roots)Quadratic equation - $alpha$ and $beta$ RootsTechnique to simplify algebraic calculations on roots of polynomialInterval of Polynomial Root FindingFind $alpha^3 + beta^3$ which are roots of a quadratic equation.sum and product of roots of polynomials: finding equations for rootsSolving two Cubic Equation on their Roots.Finding an equation with related rootsFind the roots of $acx^2-b(c+a)x+(c+a)^2=0$If $3x^2-6x+p=0$ has roots $alpha$ and $beta$, then find a quadratic with roots $(alpha+beta)/alpha$ and $(alpha+beta)/beta$Find the roots of $3x^3-4x-8$
How exactly does Hawking radiation decrease the mass of black holes?
Which big number is bigger?
Philosophical question on logistic regression: why isn't the optimal threshold value trained?
Why did C use the -> operator instead of reusing the . operator?
What term is being referred to with "reflected-sound-of-underground-spirits"?
If a planet has 3 moons, is it possible to have triple Full/New Moons at once?
Solving polynominals equations (relationship of roots)
Is there really no use for MD5 anymore?
Re-entry to Germany after vacation using blue card
"The cow" OR "a cow" OR "cows" in this context
Can someone publish a story that happened to you?
How could Tony Stark make this in Endgame?
Pulling the rope with one hand is as heavy as with two hands?
Is this homebrew Wind Wave spell balanced?
Phrase for the opposite of "foolproof"
How did Captain America manage to do this?
Don’t seats that recline flat defeat the purpose of having seatbelts?
Should the Death Curse affect an undead PC in the Tomb of Annihilation adventure?
How to stop co-workers from teasing me because I know Russian?
What makes accurate emulation of old systems a difficult task?
Why didn't the Space Shuttle bounce back into space as many times as possible so as to lose a lot of kinetic energy up there?
Was there a Viking Exchange as well as a Columbian one?
What's the name of these pliers?
Checks user level and limit the data before saving it to mongoDB
Solving polynominals equations (relationship of roots)
Quadratic equation - $alpha$ and $beta$ RootsTechnique to simplify algebraic calculations on roots of polynomialInterval of Polynomial Root FindingFind $alpha^3 + beta^3$ which are roots of a quadratic equation.sum and product of roots of polynomials: finding equations for rootsSolving two Cubic Equation on their Roots.Finding an equation with related rootsFind the roots of $acx^2-b(c+a)x+(c+a)^2=0$If $3x^2-6x+p=0$ has roots $alpha$ and $beta$, then find a quadratic with roots $(alpha+beta)/alpha$ and $(alpha+beta)/beta$Find the roots of $3x^3-4x-8$
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$
So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$
And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac113$
polynomials roots
$endgroup$
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$
So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$
And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac113$
polynomials roots
$endgroup$
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
$begingroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$
So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$
And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac113$
polynomials roots
$endgroup$
The roots of $x^3-4x^2+x+6$ are $alpha$, $beta$, and $omega$.
Find (evaluate):
$$fracalpha+betaomega+fracalpha+omegabeta+fracbeta+omegaalpha$$
So far I have found:
$$alpha+beta+omega=frac-ba = 4 \
alphabeta+betaomega+alphaomega=fracca = 1 \
alpha×beta×omega=frac-da = -6$$
And evaluated the above fractions creating
$$fracalpha^2beta+alphabeta^2+alpha^2omega+alphaomega^2+beta^2omega+betaomega^2alphabetaomega$$
I don't know how to continue evaluating the question.
Note:
The answer I have been given is $-dfrac113$
polynomials roots
polynomials roots
edited 40 mins ago
Lee David Chung Lin
4,51851342
4,51851342
asked 1 hour ago
Alex Alex
186
186
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
1
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
add a comment |
$begingroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
$endgroup$
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta$$
$$= fracalpha + beta + omega - omegaomega + fracbeta + omega + alpha - alphaalpha + fracalpha + omega + beta - betabeta$$
$$ = (alpha + beta + omega) left(frac1alpha + frac1beta + frac1omegaright) - 3$$
$$ = (alpha + beta + omega) left(fracbetaomegaalphabetaomega + fracalphaomegaalphabetaomega + fracalphabetaalphabetaomegaright) - 3$$
$$ = fracalpha + beta + omegaalphabetaomega(betaomega + alphaomega + alphabeta) - 3$$
I think you should be able to take it from there.
answered 1 hour ago
user1952500user1952500
1,5351016
1,5351016
add a comment |
add a comment |
$begingroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
$endgroup$
add a comment |
$begingroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
$endgroup$
Hint: We can write $$frac4-ww+frac4-betabeta+frac4-alphaalpha$$ and this is $$4left(fracalphabeta+alpha w+wbetaalpha beta wright)-3$$ and this is $$-frac23left(1-beta w-alpha w+alpha w+beta wright)$$
This simplifies to $$-frac23-3=-frac113$$
answered 1 hour ago
Dr. Sonnhard GraubnerDr. Sonnhard Graubner
79.7k42867
79.7k42867
add a comment |
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
$endgroup$
add a comment |
$begingroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
$endgroup$
Alternatively, you can solve the equation:
$$x^3-4x^2+x+6=0 Rightarrow (x+1)(x-2)(x-3)=0 Rightarrow \
alpha =-1, beta =2,omega=3.$$
Hence:
$$fracalpha + betaomega + fracbeta + omegaalpha + fracalpha + omegabeta=\
frac-1+ 23 + frac2 + 3-1 + frac-1 + 32=\
frac13-5+1=\
-frac113.$$
answered 16 mins ago
farruhotafarruhota
22.5k2942
22.5k2942
add a comment |
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
$endgroup$
add a comment |
$begingroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
$endgroup$
That follows from your results, since we get: $dfrac4-omegaomega+dfrac4-betabeta+dfrac4-alphaalpha=dfrac4(omegabeta+omega alpha+betaalpha)-3omegabetaalphaomega beta alpha=dfrac4+18-6=-dfrac113$.
answered 1 hour ago
Chris CusterChris Custer
14.7k3827
14.7k3827
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3204072%2fsolving-polynominals-equations-relationship-of-roots%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
For latex, you use instead of /.
$endgroup$
– BadAtGeometry
1 hour ago