Classification of surfacesconnected sum of torus with projective planeWhy can all surfaces with boundary be realized in $mathbbR^3$?2-cell embeddings of graphs in surfaces and Euler formulaAbout zeros of vector fields in compact surfacesClassification of orientable non-closed surfacesClosed, orientable surface whose genus is very hard to find intuitivelyNonorientable surfaces: genus or demigenus?Surface has Euler characteristic 2 iff equal to sphereClassification of surfaces theoremClassification of 2-dim topological manifold (not necessarily second countable)Connected sum of two non homeomorphic surfaces

Rivers without rain

What does the integral of a function times a function of a random variable represent, conceptually?

How to fry ground beef so it is well-browned

Pre-plastic human skin alternative

How exactly does Hawking radiation decrease the mass of black holes?

Check if a string is entirely made of the same substring

Is the claim "Employers won't employ people with no 'social media presence'" realistic?

Two field separators (colon and space) in awk

Re-entry to Germany after vacation using blue card

Why didn't the Space Shuttle bounce back into space as many times as possible so as to lose a lot of kinetic energy up there?

A ​Note ​on ​N!

Can we say “you can pay when the order gets ready”?

On The Origin of Dissonant Chords

As an international instructor, should I openly talk about my accent?

Critique of timeline aesthetic

Elements other than carbon that can form many different compounds by bonding to themselves?

Does tea made with boiling water cool faster than tea made with boiled (but still hot) water?

Is it idiomatic to construct against `this`

Who was the lone kid in the line of people at the lake at the end of Avengers: Endgame?

"You've called the wrong number" or "You called the wrong number"

How to pronounce 'c++' in Spanish

Mistake in years of experience in resume?

Is there really no use for MD5 anymore?

How did Captain America manage to do this?



Classification of surfaces


connected sum of torus with projective planeWhy can all surfaces with boundary be realized in $mathbbR^3$?2-cell embeddings of graphs in surfaces and Euler formulaAbout zeros of vector fields in compact surfacesClassification of orientable non-closed surfacesClosed, orientable surface whose genus is very hard to find intuitivelyNonorientable surfaces: genus or demigenus?Surface has Euler characteristic 2 iff equal to sphereClassification of surfaces theoremClassification of 2-dim topological manifold (not necessarily second countable)Connected sum of two non homeomorphic surfaces













4












$begingroup$


The Classification Theorem for surfaces says that a compact connected surface $M$ is homeomorphic to $$S^2# (#_gT^2)# (#_b D^2)# (#_c mathbbRP^2),$$ so $g$ is the genus of the surface, $b$ the number of boundary components and $c$ the number of projective planes.



From there, it is easy to compute $chi(M)=2-2g-b-c$.



Nevertheless, I have read another statement of The Classification Theorem that states that a compact connected surface is determined by its orientability (yes/no), the number of boundary components and its Euler characteristic.



I do not understand how is it possible to know the decomposition of $M$ as a connected sum by knowing that. By knowing $b$, there are still two variables, $c$ and $g$ which have to be known from $chi(M)$, and orientability only tells us if $c=0$ or $cgeq 1$. Can someone help me, please?










share|cite|improve this question









$endgroup$











  • $begingroup$
    This can help you math.stackexchange.com/q/358724/654562
    $endgroup$
    – dcolazin
    2 hours ago















4












$begingroup$


The Classification Theorem for surfaces says that a compact connected surface $M$ is homeomorphic to $$S^2# (#_gT^2)# (#_b D^2)# (#_c mathbbRP^2),$$ so $g$ is the genus of the surface, $b$ the number of boundary components and $c$ the number of projective planes.



From there, it is easy to compute $chi(M)=2-2g-b-c$.



Nevertheless, I have read another statement of The Classification Theorem that states that a compact connected surface is determined by its orientability (yes/no), the number of boundary components and its Euler characteristic.



I do not understand how is it possible to know the decomposition of $M$ as a connected sum by knowing that. By knowing $b$, there are still two variables, $c$ and $g$ which have to be known from $chi(M)$, and orientability only tells us if $c=0$ or $cgeq 1$. Can someone help me, please?










share|cite|improve this question









$endgroup$











  • $begingroup$
    This can help you math.stackexchange.com/q/358724/654562
    $endgroup$
    – dcolazin
    2 hours ago













4












4








4





$begingroup$


The Classification Theorem for surfaces says that a compact connected surface $M$ is homeomorphic to $$S^2# (#_gT^2)# (#_b D^2)# (#_c mathbbRP^2),$$ so $g$ is the genus of the surface, $b$ the number of boundary components and $c$ the number of projective planes.



From there, it is easy to compute $chi(M)=2-2g-b-c$.



Nevertheless, I have read another statement of The Classification Theorem that states that a compact connected surface is determined by its orientability (yes/no), the number of boundary components and its Euler characteristic.



I do not understand how is it possible to know the decomposition of $M$ as a connected sum by knowing that. By knowing $b$, there are still two variables, $c$ and $g$ which have to be known from $chi(M)$, and orientability only tells us if $c=0$ or $cgeq 1$. Can someone help me, please?










share|cite|improve this question









$endgroup$




The Classification Theorem for surfaces says that a compact connected surface $M$ is homeomorphic to $$S^2# (#_gT^2)# (#_b D^2)# (#_c mathbbRP^2),$$ so $g$ is the genus of the surface, $b$ the number of boundary components and $c$ the number of projective planes.



From there, it is easy to compute $chi(M)=2-2g-b-c$.



Nevertheless, I have read another statement of The Classification Theorem that states that a compact connected surface is determined by its orientability (yes/no), the number of boundary components and its Euler characteristic.



I do not understand how is it possible to know the decomposition of $M$ as a connected sum by knowing that. By knowing $b$, there are still two variables, $c$ and $g$ which have to be known from $chi(M)$, and orientability only tells us if $c=0$ or $cgeq 1$. Can someone help me, please?







manifolds surfaces orientation manifolds-with-boundary non-orientable-surfaces






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









KarenKaren

1336




1336











  • $begingroup$
    This can help you math.stackexchange.com/q/358724/654562
    $endgroup$
    – dcolazin
    2 hours ago
















  • $begingroup$
    This can help you math.stackexchange.com/q/358724/654562
    $endgroup$
    – dcolazin
    2 hours ago















$begingroup$
This can help you math.stackexchange.com/q/358724/654562
$endgroup$
– dcolazin
2 hours ago




$begingroup$
This can help you math.stackexchange.com/q/358724/654562
$endgroup$
– dcolazin
2 hours ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.



This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.



Please correct me if I misunderstood your question.






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Since $mathbbRP^2# mathbbRP^2#mathbbRP^2cong mathbbRP^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.



    Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3203841%2fclassification-of-surfaces%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.



      This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.



      Please correct me if I misunderstood your question.






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.



        This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.



        Please correct me if I misunderstood your question.






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.



          This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.



          Please correct me if I misunderstood your question.






          share|cite|improve this answer









          $endgroup$



          If I read correctly you are trying to determine $c$ and $g$, given a compact connected surface $M$ for which you know $b$ the number of boundary components, $chi(M)$ the Euler characteristic the and whether or not $M$ is orientable.



          This can't be done in a unique manner, as the connected sum of a tori and a projective plan is homeomorphic to the connected sum of three projective planes.



          Please correct me if I misunderstood your question.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 hours ago









          Adam ChalumeauAdam Chalumeau

          48010




          48010





















              2












              $begingroup$

              Since $mathbbRP^2# mathbbRP^2#mathbbRP^2cong mathbbRP^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.



              Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Since $mathbbRP^2# mathbbRP^2#mathbbRP^2cong mathbbRP^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.



                Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Since $mathbbRP^2# mathbbRP^2#mathbbRP^2cong mathbbRP^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.



                  Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.






                  share|cite|improve this answer









                  $endgroup$



                  Since $mathbbRP^2# mathbbRP^2#mathbbRP^2cong mathbbRP^2 # T^2$, $c$ and $g$ are not uniquely determined: if $cgeq 3$, you can subtract $2$ from $c$ and add $1$ to $g$ and get the same surface, or if $c,ggeq 1$, you can subtract $1$ from $g$ and add $2$ to $c$.



                  Note, though, that the first operation can always be used to get a connected sum presentation where $cleq 2$. If you impose the additional restriction that $cleq 2$, then $c$ and $g$ can be uniquely determined and can be calculated from the data you mention. If the surface is orientable, then $c=0$ and then you can just solve for $g$. If the surface is not orientable, then you can determine whether $c=1$ or $c=2$ since $c$ must have the same parity as $chi(M)+b$. Once $c$ is determined, you can solve for $g$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  Eric WofseyEric Wofsey

                  194k14223354




                  194k14223354



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3203841%2fclassification-of-surfaces%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                      Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                      Tom Holland Mục lục Đầu đời và giáo dục | Sự nghiệp | Cuộc sống cá nhân | Phim tham gia | Giải thưởng và đề cử | Chú thích | Liên kết ngoài | Trình đơn chuyển hướngProfile“Person Details for Thomas Stanley Holland, "England and Wales Birth Registration Index, 1837-2008" — FamilySearch.org”"Meet Tom Holland... the 16-year-old star of The Impossible""Schoolboy actor Tom Holland finds himself in Oscar contention for role in tsunami drama"“Naomi Watts on the Prince William and Harry's reaction to her film about the late Princess Diana”lưu trữ"Holland and Pflueger Are West End's Two New 'Billy Elliots'""I'm so envious of my son, the movie star! British writer Dominic Holland's spent 20 years trying to crack Hollywood - but he's been beaten to it by a very unlikely rival"“Richard and Margaret Povey of Jersey, Channel Islands, UK: Information about Thomas Stanley Holland”"Tom Holland to play Billy Elliot""New Billy Elliot leaving the garage"Billy Elliot the Musical - Tom Holland - Billy"A Tale of four Billys: Tom Holland""The Feel Good Factor""Thames Christian College schoolboys join Myleene Klass for The Feelgood Factor""Government launches £600,000 arts bursaries pilot""BILLY's Chapman, Holland, Gardner & Jackson-Keen Visit Prime Minister""Elton John 'blown away' by Billy Elliot fifth birthday" (video with John's interview and fragments of Holland's performance)"First News interviews Arrietty's Tom Holland"“33rd Critics' Circle Film Awards winners”“National Board of Review Current Awards”Bản gốc"Ron Howard Whaling Tale 'In The Heart Of The Sea' Casts Tom Holland"“'Spider-Man' Finds Tom Holland to Star as New Web-Slinger”lưu trữ“Captain America: Civil War (2016)”“Film Review: ‘Captain America: Civil War’”lưu trữ“‘Captain America: Civil War’ review: Choose your own avenger”lưu trữ“The Lost City of Z reviews”“Sony Pictures and Marvel Studios Find Their 'Spider-Man' Star and Director”“‘Mary Magdalene’, ‘Current War’ & ‘Wind River’ Get 2017 Release Dates From Weinstein”“Lionsgate Unleashing Daisy Ridley & Tom Holland Starrer ‘Chaos Walking’ In Cannes”“PTA's 'Master' Leads Chicago Film Critics Nominations, UPDATED: Houston and Indiana Critics Nominations”“Nominaciones Goya 2013 Telecinco Cinema – ENG”“Jameson Empire Film Awards: Martin Freeman wins best actor for performance in The Hobbit”“34th Annual Young Artist Awards”Bản gốc“Teen Choice Awards 2016—Captain America: Civil War Leads Second Wave of Nominations”“BAFTA Film Award Nominations: ‘La La Land’ Leads Race”“Saturn Awards Nominations 2017: 'Rogue One,' 'Walking Dead' Lead”Tom HollandTom HollandTom HollandTom Hollandmedia.gettyimages.comWorldCat Identities300279794no20130442900000 0004 0355 42791085670554170004732cb16706349t(data)XX5557367