Partitioning the Reals into two Locally Uncountable, Dense SetsLocally non-enumerable dense subsets of RUncountable dense subset whose complement is also uncountable and denseA question about uncountable, dense sets in RA Question regarding disjoint dense setsThere is no uncountable collection of pairwise disjoint open sets in $mathbb R$Prove that an uncountable space with the countable-closed topology satisfies the countable chain condition.Is $mathbbR$ the disjoint union of finitely many congruent dense sets?Can a countable dense subset be split into two disjoint dense subsets?3 dense uncountable pairwise disjoint subsets of real lineIs the intersection of a dense set and a linear subspace in $mathbb R^n$ dense?

How does Captain America channel this power?

What is causing the white spot to appear in some of my pictures

What's the name of these pliers?

How to denote matrix elements succinctly?

A ​Note ​on ​N!

Implications of cigar-shaped bodies having rings?

How much cash can I safely carry into the USA and avoid civil forfeiture?

A strange hotel

Does Gita support doctrine of eternal samsara?

Is this homebrew Wind Wave spell balanced?

What are the characteristics of a typeless programming language?

Checks user level and limit the data before saving it to mongoDB

"You've called the wrong number" or "You called the wrong number"

How to have a sharp product image?

Dynamic SOQL query relationship with field visibility for Users

Is Diceware more secure than a long passphrase?

How did Captain America manage to do this?

Get consecutive integer number ranges from list of int

Can I criticise the more senior developers around me for not writing clean code?

What makes accurate emulation of old systems a difficult task?

How to fry ground beef so it is well-browned

Providing evidence of Consent of Parents for Marriage by minor in England in early 1800s?

A Paper Record is What I Hamper

What happens to Mjolnir (Thor's hammer) at the end of Endgame?



Partitioning the Reals into two Locally Uncountable, Dense Sets


Locally non-enumerable dense subsets of RUncountable dense subset whose complement is also uncountable and denseA question about uncountable, dense sets in RA Question regarding disjoint dense setsThere is no uncountable collection of pairwise disjoint open sets in $mathbb R$Prove that an uncountable space with the countable-closed topology satisfies the countable chain condition.Is $mathbbR$ the disjoint union of finitely many congruent dense sets?Can a countable dense subset be split into two disjoint dense subsets?3 dense uncountable pairwise disjoint subsets of real lineIs the intersection of a dense set and a linear subspace in $mathbb R^n$ dense?













2












$begingroup$


Is it possible to find two disjoint subsets $X$ and $Y$ of $mathbbR$ such that both are dense in $mathbbR$ and both are locally uncountable?



By a locally uncountable set $X subset mathbbR$, I mean a set which has the property that if I take any nonempty open subset $U$ of $mathbbR$, then $U cap X$ has cardinality strictly larger than the natural numbers.










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    Is it possible to find two disjoint subsets $X$ and $Y$ of $mathbbR$ such that both are dense in $mathbbR$ and both are locally uncountable?



    By a locally uncountable set $X subset mathbbR$, I mean a set which has the property that if I take any nonempty open subset $U$ of $mathbbR$, then $U cap X$ has cardinality strictly larger than the natural numbers.










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Is it possible to find two disjoint subsets $X$ and $Y$ of $mathbbR$ such that both are dense in $mathbbR$ and both are locally uncountable?



      By a locally uncountable set $X subset mathbbR$, I mean a set which has the property that if I take any nonempty open subset $U$ of $mathbbR$, then $U cap X$ has cardinality strictly larger than the natural numbers.










      share|cite|improve this question









      $endgroup$




      Is it possible to find two disjoint subsets $X$ and $Y$ of $mathbbR$ such that both are dense in $mathbbR$ and both are locally uncountable?



      By a locally uncountable set $X subset mathbbR$, I mean a set which has the property that if I take any nonempty open subset $U$ of $mathbbR$, then $U cap X$ has cardinality strictly larger than the natural numbers.







      general-topology measure-theory examples-counterexamples






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      Charles HudginsCharles Hudgins

      3006




      3006




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Yes. For instance, for each interval with rational endpoints, pick a Cantor set in the interval, and let $X$ be the union of all these Cantor sets. Then $X$ has uncountable intersection with every open interval, but it is meager (or measure zero, if the Cantor sets you chose all have measure zero) so its complement $Y$ has uncountable intersection with every open interval as well.



          Here's another construction which gives uncountably many such subsets at once. For each $rinmathbbR$, let $X_r$ be the set of real numbers whose decimal expansion agrees with $r$'s decimal expansion on all but finitely many of the even digits. Then each $X_r$ has uncountably many points in any open interval, but $X_r$ and $X_s$ are disjoint unless all but finitely many of the even digits of $r$ agree with those of $s$ (in which case $X_r=X_s$).



          With heavy use of the axiom of choice, you can get even crazier examples. For instance, you can construct a family of uncountably many disjoint subsets of $mathbbR$, each of which has uncountable intersection with every uncountable closed subset of $mathbbR$. As a sketch of the proof, note that there are $2^aleph_0$ such uncountable closed sets and each has $2^aleph_0$ elements, so you can one by one pick elements to put in each of the sets you're building in a transfinite recursion of length $2^aleph_0$. For more details of this and related constructions, look up "Bernstein sets".






          share|cite|improve this answer











          $endgroup$




















            2












            $begingroup$

            Here is a choice free version. Let $A$ be the set of reals whose decimal expansions eventually consist of only $3$s and $4$s and $B$ be the set of reals whose decimal expansions eventually consist of only $5$s and $6$s. These are both locally uncountable dense subsets of $Bbb R$ and there are lots of reals I haven't used.






            share|cite|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3203999%2fpartitioning-the-reals-into-two-locally-uncountable-dense-sets%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Yes. For instance, for each interval with rational endpoints, pick a Cantor set in the interval, and let $X$ be the union of all these Cantor sets. Then $X$ has uncountable intersection with every open interval, but it is meager (or measure zero, if the Cantor sets you chose all have measure zero) so its complement $Y$ has uncountable intersection with every open interval as well.



              Here's another construction which gives uncountably many such subsets at once. For each $rinmathbbR$, let $X_r$ be the set of real numbers whose decimal expansion agrees with $r$'s decimal expansion on all but finitely many of the even digits. Then each $X_r$ has uncountably many points in any open interval, but $X_r$ and $X_s$ are disjoint unless all but finitely many of the even digits of $r$ agree with those of $s$ (in which case $X_r=X_s$).



              With heavy use of the axiom of choice, you can get even crazier examples. For instance, you can construct a family of uncountably many disjoint subsets of $mathbbR$, each of which has uncountable intersection with every uncountable closed subset of $mathbbR$. As a sketch of the proof, note that there are $2^aleph_0$ such uncountable closed sets and each has $2^aleph_0$ elements, so you can one by one pick elements to put in each of the sets you're building in a transfinite recursion of length $2^aleph_0$. For more details of this and related constructions, look up "Bernstein sets".






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                Yes. For instance, for each interval with rational endpoints, pick a Cantor set in the interval, and let $X$ be the union of all these Cantor sets. Then $X$ has uncountable intersection with every open interval, but it is meager (or measure zero, if the Cantor sets you chose all have measure zero) so its complement $Y$ has uncountable intersection with every open interval as well.



                Here's another construction which gives uncountably many such subsets at once. For each $rinmathbbR$, let $X_r$ be the set of real numbers whose decimal expansion agrees with $r$'s decimal expansion on all but finitely many of the even digits. Then each $X_r$ has uncountably many points in any open interval, but $X_r$ and $X_s$ are disjoint unless all but finitely many of the even digits of $r$ agree with those of $s$ (in which case $X_r=X_s$).



                With heavy use of the axiom of choice, you can get even crazier examples. For instance, you can construct a family of uncountably many disjoint subsets of $mathbbR$, each of which has uncountable intersection with every uncountable closed subset of $mathbbR$. As a sketch of the proof, note that there are $2^aleph_0$ such uncountable closed sets and each has $2^aleph_0$ elements, so you can one by one pick elements to put in each of the sets you're building in a transfinite recursion of length $2^aleph_0$. For more details of this and related constructions, look up "Bernstein sets".






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  Yes. For instance, for each interval with rational endpoints, pick a Cantor set in the interval, and let $X$ be the union of all these Cantor sets. Then $X$ has uncountable intersection with every open interval, but it is meager (or measure zero, if the Cantor sets you chose all have measure zero) so its complement $Y$ has uncountable intersection with every open interval as well.



                  Here's another construction which gives uncountably many such subsets at once. For each $rinmathbbR$, let $X_r$ be the set of real numbers whose decimal expansion agrees with $r$'s decimal expansion on all but finitely many of the even digits. Then each $X_r$ has uncountably many points in any open interval, but $X_r$ and $X_s$ are disjoint unless all but finitely many of the even digits of $r$ agree with those of $s$ (in which case $X_r=X_s$).



                  With heavy use of the axiom of choice, you can get even crazier examples. For instance, you can construct a family of uncountably many disjoint subsets of $mathbbR$, each of which has uncountable intersection with every uncountable closed subset of $mathbbR$. As a sketch of the proof, note that there are $2^aleph_0$ such uncountable closed sets and each has $2^aleph_0$ elements, so you can one by one pick elements to put in each of the sets you're building in a transfinite recursion of length $2^aleph_0$. For more details of this and related constructions, look up "Bernstein sets".






                  share|cite|improve this answer











                  $endgroup$



                  Yes. For instance, for each interval with rational endpoints, pick a Cantor set in the interval, and let $X$ be the union of all these Cantor sets. Then $X$ has uncountable intersection with every open interval, but it is meager (or measure zero, if the Cantor sets you chose all have measure zero) so its complement $Y$ has uncountable intersection with every open interval as well.



                  Here's another construction which gives uncountably many such subsets at once. For each $rinmathbbR$, let $X_r$ be the set of real numbers whose decimal expansion agrees with $r$'s decimal expansion on all but finitely many of the even digits. Then each $X_r$ has uncountably many points in any open interval, but $X_r$ and $X_s$ are disjoint unless all but finitely many of the even digits of $r$ agree with those of $s$ (in which case $X_r=X_s$).



                  With heavy use of the axiom of choice, you can get even crazier examples. For instance, you can construct a family of uncountably many disjoint subsets of $mathbbR$, each of which has uncountable intersection with every uncountable closed subset of $mathbbR$. As a sketch of the proof, note that there are $2^aleph_0$ such uncountable closed sets and each has $2^aleph_0$ elements, so you can one by one pick elements to put in each of the sets you're building in a transfinite recursion of length $2^aleph_0$. For more details of this and related constructions, look up "Bernstein sets".







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 3 hours ago

























                  answered 3 hours ago









                  Eric WofseyEric Wofsey

                  194k14223354




                  194k14223354





















                      2












                      $begingroup$

                      Here is a choice free version. Let $A$ be the set of reals whose decimal expansions eventually consist of only $3$s and $4$s and $B$ be the set of reals whose decimal expansions eventually consist of only $5$s and $6$s. These are both locally uncountable dense subsets of $Bbb R$ and there are lots of reals I haven't used.






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        Here is a choice free version. Let $A$ be the set of reals whose decimal expansions eventually consist of only $3$s and $4$s and $B$ be the set of reals whose decimal expansions eventually consist of only $5$s and $6$s. These are both locally uncountable dense subsets of $Bbb R$ and there are lots of reals I haven't used.






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Here is a choice free version. Let $A$ be the set of reals whose decimal expansions eventually consist of only $3$s and $4$s and $B$ be the set of reals whose decimal expansions eventually consist of only $5$s and $6$s. These are both locally uncountable dense subsets of $Bbb R$ and there are lots of reals I haven't used.






                          share|cite|improve this answer









                          $endgroup$



                          Here is a choice free version. Let $A$ be the set of reals whose decimal expansions eventually consist of only $3$s and $4$s and $B$ be the set of reals whose decimal expansions eventually consist of only $5$s and $6$s. These are both locally uncountable dense subsets of $Bbb R$ and there are lots of reals I haven't used.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 3 hours ago









                          Ross MillikanRoss Millikan

                          302k24201375




                          302k24201375



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3203999%2fpartitioning-the-reals-into-two-locally-uncountable-dense-sets%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                              Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                              Tom Holland Mục lục Đầu đời và giáo dục | Sự nghiệp | Cuộc sống cá nhân | Phim tham gia | Giải thưởng và đề cử | Chú thích | Liên kết ngoài | Trình đơn chuyển hướngProfile“Person Details for Thomas Stanley Holland, "England and Wales Birth Registration Index, 1837-2008" — FamilySearch.org”"Meet Tom Holland... the 16-year-old star of The Impossible""Schoolboy actor Tom Holland finds himself in Oscar contention for role in tsunami drama"“Naomi Watts on the Prince William and Harry's reaction to her film about the late Princess Diana”lưu trữ"Holland and Pflueger Are West End's Two New 'Billy Elliots'""I'm so envious of my son, the movie star! British writer Dominic Holland's spent 20 years trying to crack Hollywood - but he's been beaten to it by a very unlikely rival"“Richard and Margaret Povey of Jersey, Channel Islands, UK: Information about Thomas Stanley Holland”"Tom Holland to play Billy Elliot""New Billy Elliot leaving the garage"Billy Elliot the Musical - Tom Holland - Billy"A Tale of four Billys: Tom Holland""The Feel Good Factor""Thames Christian College schoolboys join Myleene Klass for The Feelgood Factor""Government launches £600,000 arts bursaries pilot""BILLY's Chapman, Holland, Gardner & Jackson-Keen Visit Prime Minister""Elton John 'blown away' by Billy Elliot fifth birthday" (video with John's interview and fragments of Holland's performance)"First News interviews Arrietty's Tom Holland"“33rd Critics' Circle Film Awards winners”“National Board of Review Current Awards”Bản gốc"Ron Howard Whaling Tale 'In The Heart Of The Sea' Casts Tom Holland"“'Spider-Man' Finds Tom Holland to Star as New Web-Slinger”lưu trữ“Captain America: Civil War (2016)”“Film Review: ‘Captain America: Civil War’”lưu trữ“‘Captain America: Civil War’ review: Choose your own avenger”lưu trữ“The Lost City of Z reviews”“Sony Pictures and Marvel Studios Find Their 'Spider-Man' Star and Director”“‘Mary Magdalene’, ‘Current War’ & ‘Wind River’ Get 2017 Release Dates From Weinstein”“Lionsgate Unleashing Daisy Ridley & Tom Holland Starrer ‘Chaos Walking’ In Cannes”“PTA's 'Master' Leads Chicago Film Critics Nominations, UPDATED: Houston and Indiana Critics Nominations”“Nominaciones Goya 2013 Telecinco Cinema – ENG”“Jameson Empire Film Awards: Martin Freeman wins best actor for performance in The Hobbit”“34th Annual Young Artist Awards”Bản gốc“Teen Choice Awards 2016—Captain America: Civil War Leads Second Wave of Nominations”“BAFTA Film Award Nominations: ‘La La Land’ Leads Race”“Saturn Awards Nominations 2017: 'Rogue One,' 'Walking Dead' Lead”Tom HollandTom HollandTom HollandTom Hollandmedia.gettyimages.comWorldCat Identities300279794no20130442900000 0004 0355 42791085670554170004732cb16706349t(data)XX5557367