Dominated convergence theorem - what sequence? The Next CEO of Stack OverflowWhat are some good integration problems where you can use some of the function convergence theorem of Lesbegue integrals?Find Limit Using Lebesgue Dominated ConvergenceSolving these types of integrals, using Monotone convergence theorem and Dominated convergence theorem.Applications of Dominated/Monotone convergence theoremLebesgue Dominated Convergence Theorem exampleDominated convergence theorem for log-integrable rational functionsuniform or dominated convergence of sequence of functions which are boundedBartle's proof of Lebesgue Dominated Convergence TheoremCalculate the limit using dominated or monotone convergence theoremUsing dominated convergence theorem to move limit inside the integral

Is wanting to ask what to write an indication that you need to change your story?

Does increasing your ability score affect your main stat?

Can a Bladesinger Wizard use Bladesong with a Hand Crossbow?

Why didn't Khan get resurrected in the Genesis Explosion?

Why is quantifier elimination desirable for a given theory?

INSERT to a table from a database to other (same SQL Server) using Dynamic SQL

Are police here, aren't itthey?

Why do airplanes bank sharply to the right after air-to-air refueling?

Why, when going from special to general relativity, do we just replace partial derivatives with covariant derivatives?

Reference request: Grassmannian and Plucker coordinates in type B, C, D

Does Germany produce more waste than the US?

Why isn't the Mueller report being released completely and unredacted?

Some questions about different axiomatic systems for neighbourhoods

What connection does MS Office have to Netscape Navigator?

How to install OpenCV on Raspbian Stretch?

Why doesn't UK go for the same deal Japan has with EU to resolve Brexit?

Would a completely good Muggle be able to use a wand?

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Missile strike detection (but it's not actually a missile)

Running a General Election and the European Elections together

Can MTA send mail via a relay without being told so?

Which one is the true statement?

Bartok - Syncopation (1): Meaning of notes in between Grand Staff

Should I tutor a student who I know has cheated on their homework?



Dominated convergence theorem - what sequence?



The Next CEO of Stack OverflowWhat are some good integration problems where you can use some of the function convergence theorem of Lesbegue integrals?Find Limit Using Lebesgue Dominated ConvergenceSolving these types of integrals, using Monotone convergence theorem and Dominated convergence theorem.Applications of Dominated/Monotone convergence theoremLebesgue Dominated Convergence Theorem exampleDominated convergence theorem for log-integrable rational functionsuniform or dominated convergence of sequence of functions which are boundedBartle's proof of Lebesgue Dominated Convergence TheoremCalculate the limit using dominated or monotone convergence theoremUsing dominated convergence theorem to move limit inside the integral










2












$begingroup$


Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
$$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
    $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
    Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



    P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
      $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
      Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



      P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










      share|cite|improve this question









      $endgroup$




      Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
      $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
      Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



      P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!







      integration limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      Ivan V.Ivan V.

      911216




      911216




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



          This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



          And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              2 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              1 hour ago











            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168778%2fdominated-convergence-theorem-what-sequence%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



            This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



            And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



              This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



              And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



                This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



                And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






                share|cite|improve this answer









                $endgroup$



                Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



                This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



                And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 4 hours ago









                Saucy O'PathSaucy O'Path

                6,2141627




                6,2141627





















                    2












                    $begingroup$

                    The statement of the dominated convergence theorem (DCT) is as follows:




                    "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
                    $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




                    (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



                    As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




                    Proposition. If $f$ is a function, then
                    $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




                    With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




                    "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
                    $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




                    The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                      $endgroup$
                      – Ivan V.
                      2 hours ago










                    • $begingroup$
                      @IvanV.: Yes, that's correct!
                      $endgroup$
                      – Alex Ortiz
                      1 hour ago















                    2












                    $begingroup$

                    The statement of the dominated convergence theorem (DCT) is as follows:




                    "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
                    $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




                    (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



                    As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




                    Proposition. If $f$ is a function, then
                    $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




                    With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




                    "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
                    $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




                    The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






                    share|cite|improve this answer











                    $endgroup$












                    • $begingroup$
                      Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                      $endgroup$
                      – Ivan V.
                      2 hours ago










                    • $begingroup$
                      @IvanV.: Yes, that's correct!
                      $endgroup$
                      – Alex Ortiz
                      1 hour ago













                    2












                    2








                    2





                    $begingroup$

                    The statement of the dominated convergence theorem (DCT) is as follows:




                    "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
                    $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




                    (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



                    As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




                    Proposition. If $f$ is a function, then
                    $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




                    With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




                    "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
                    $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




                    The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






                    share|cite|improve this answer











                    $endgroup$



                    The statement of the dominated convergence theorem (DCT) is as follows:




                    "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
                    $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




                    (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



                    As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




                    Proposition. If $f$ is a function, then
                    $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




                    With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




                    "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
                    $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




                    The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 4 hours ago

























                    answered 4 hours ago









                    Alex OrtizAlex Ortiz

                    11.2k21441




                    11.2k21441











                    • $begingroup$
                      Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                      $endgroup$
                      – Ivan V.
                      2 hours ago










                    • $begingroup$
                      @IvanV.: Yes, that's correct!
                      $endgroup$
                      – Alex Ortiz
                      1 hour ago
















                    • $begingroup$
                      Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                      $endgroup$
                      – Ivan V.
                      2 hours ago










                    • $begingroup$
                      @IvanV.: Yes, that's correct!
                      $endgroup$
                      – Alex Ortiz
                      1 hour ago















                    $begingroup$
                    Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                    $endgroup$
                    – Ivan V.
                    2 hours ago




                    $begingroup$
                    Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
                    $endgroup$
                    – Ivan V.
                    2 hours ago












                    $begingroup$
                    @IvanV.: Yes, that's correct!
                    $endgroup$
                    – Alex Ortiz
                    1 hour ago




                    $begingroup$
                    @IvanV.: Yes, that's correct!
                    $endgroup$
                    – Alex Ortiz
                    1 hour ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168778%2fdominated-convergence-theorem-what-sequence%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                    Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                    Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її