calculus parametric curve length The Next CEO of Stack OverflowFind the length of the parametric curve (Difficult)Parametric Curve Tangent EquationsParametric curve parametriced by lengthCompute the length of a parametric curve.Arc Length parametric curveSampling a curve (parametric)Arc Length with Parametric EquationsFind the length of the parametric curveTransforming quadratic parametric curve to implicit formLength of a parametric curve formula: What does the integral represent?

Different harmonic changes implied by a simple descending scale

How to invert MapIndexed on a ragged structure? How to construct a tree from rules?

Contours of a clandestine nature

Is there a difference between "Fahrstuhl" and "Aufzug"

Is it professional to write unrelated content in an almost-empty email?

What happens if you roll doubles 3 times then land on "Go to jail?"

I believe this to be a fraud - hired, then asked to cash check and send cash as Bitcoin

Can I equip Skullclamp on a creature I am sacrificing?

What is ( CFMCC ) on ILS approach chart?

Why don't programming languages automatically manage the synchronous/asynchronous problem?

What does "Its cash flow is deeply negative" mean?

Non-deterministic sum of floats

Elegant way to replace substring in a regex with optional groups in Python?

Make solar eclipses exceedingly rare, but still have new moons

What is the result of assigning to std::vector<T>::begin()?

What flight has the highest ratio of time difference to flight time?

Limits on contract work without pre-agreed price/contract (UK)

What happened in Rome, when the western empire "fell"?

Is it ever safe to open a suspicious html file (e.g. email attachment)?

How to add tiny 0.5A 120V load to very remote split phase 240v 3 wire well house

If the heap is initialized for security, then why is the stack uninitialized?

Which tube will fit a -(700 x 25c) wheel?

Novel about a guy who is possessed by the divine essence and the world ends?

Why do airplanes bank sharply to the right after air-to-air refueling?



calculus parametric curve length



The Next CEO of Stack OverflowFind the length of the parametric curve (Difficult)Parametric Curve Tangent EquationsParametric curve parametriced by lengthCompute the length of a parametric curve.Arc Length parametric curveSampling a curve (parametric)Arc Length with Parametric EquationsFind the length of the parametric curveTransforming quadratic parametric curve to implicit formLength of a parametric curve formula: What does the integral represent?










3












$begingroup$


Find the length of the following parametric curve.



$x  =  5  +  frac92 t^3$ , $y  =  4  +  3 t^frac92$ , $0 leq  t leq  2$.



I used integration and after some point I got lost :( Can anyone show me the steps?










share|cite











$endgroup$











  • $begingroup$
    Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    5 hours ago
















3












$begingroup$


Find the length of the following parametric curve.



$x  =  5  +  frac92 t^3$ , $y  =  4  +  3 t^frac92$ , $0 leq  t leq  2$.



I used integration and after some point I got lost :( Can anyone show me the steps?










share|cite











$endgroup$











  • $begingroup$
    Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    5 hours ago














3












3








3





$begingroup$


Find the length of the following parametric curve.



$x  =  5  +  frac92 t^3$ , $y  =  4  +  3 t^frac92$ , $0 leq  t leq  2$.



I used integration and after some point I got lost :( Can anyone show me the steps?










share|cite











$endgroup$




Find the length of the following parametric curve.



$x  =  5  +  frac92 t^3$ , $y  =  4  +  3 t^frac92$ , $0 leq  t leq  2$.



I used integration and after some point I got lost :( Can anyone show me the steps?







calculus parametric






share|cite















share|cite













share|cite




share|cite








edited 5 hours ago









Matt A Pelto

2,667621




2,667621










asked 5 hours ago









McAMcA

204




204











  • $begingroup$
    Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    5 hours ago

















  • $begingroup$
    Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    5 hours ago
















$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
5 hours ago





$begingroup$
Is this $$x=5+frac92t^3,y=4+3t^9/2$$?
$endgroup$
– Dr. Sonnhard Graubner
5 hours ago











3 Answers
3






active

oldest

votes


















2












$begingroup$

Apply the formula for arc length, we get
$$
int_0^2 frac27t^2,sqrtt^3+12 dt
$$

Then we make the change of variable $v=t^3+1$ to get
$$
int_1^9 frac 9 2 sqrtv dv = 78.
$$






share|cite|improve this answer








New contributor




EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




















    2












    $begingroup$

    beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



    Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.






    share|cite|improve this answer











    $endgroup$




















      1












      $begingroup$

      You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
      $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fcalculus-parametric-curve-length%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        Apply the formula for arc length, we get
        $$
        int_0^2 frac27t^2,sqrtt^3+12 dt
        $$

        Then we make the change of variable $v=t^3+1$ to get
        $$
        int_1^9 frac 9 2 sqrtv dv = 78.
        $$






        share|cite|improve this answer








        New contributor




        EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
        Check out our Code of Conduct.






        $endgroup$

















          2












          $begingroup$

          Apply the formula for arc length, we get
          $$
          int_0^2 frac27t^2,sqrtt^3+12 dt
          $$

          Then we make the change of variable $v=t^3+1$ to get
          $$
          int_1^9 frac 9 2 sqrtv dv = 78.
          $$






          share|cite|improve this answer








          New contributor




          EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$















            2












            2








            2





            $begingroup$

            Apply the formula for arc length, we get
            $$
            int_0^2 frac27t^2,sqrtt^3+12 dt
            $$

            Then we make the change of variable $v=t^3+1$ to get
            $$
            int_1^9 frac 9 2 sqrtv dv = 78.
            $$






            share|cite|improve this answer








            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$



            Apply the formula for arc length, we get
            $$
            int_0^2 frac27t^2,sqrtt^3+12 dt
            $$

            Then we make the change of variable $v=t^3+1$ to get
            $$
            int_1^9 frac 9 2 sqrtv dv = 78.
            $$







            share|cite|improve this answer








            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            share|cite|improve this answer



            share|cite|improve this answer






            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.









            answered 5 hours ago









            EagleToLearnEagleToLearn

            233




            233




            New contributor




            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





            New contributor





            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            EagleToLearn is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.





















                2












                $begingroup$

                beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



                Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.






                share|cite|improve this answer











                $endgroup$

















                  2












                  $begingroup$

                  beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



                  Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.






                  share|cite|improve this answer











                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



                    Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.






                    share|cite|improve this answer











                    $endgroup$



                    beginalignedL&=int_0^2 sqrtfrac7294t^4+frac7294t^7dt\&=int_0^2sqrtfrac7294t^4(1+t^3)dt\&=frac272int_0^2t^2(1+t^3)^frac12dt\&=3(1+t^3)^frac32big]_0^2endaligned



                    Made the leap from the third line to the fourth line by recognizing that $F(t)=3(1+t^3)^frac32$ is an antiderivative of $f(t)=frac272t^2(1+t^3)^frac12$.







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 4 hours ago

























                    answered 5 hours ago









                    Matt A PeltoMatt A Pelto

                    2,667621




                    2,667621





















                        1












                        $begingroup$

                        You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
                        $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$






                        share|cite|improve this answer









                        $endgroup$

















                          1












                          $begingroup$

                          You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
                          $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$






                          share|cite|improve this answer









                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
                            $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$






                            share|cite|improve this answer









                            $endgroup$



                            You must use the formula $$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
                            $$dx=frac923t^2dt$$ and $$dy=3cdot frac92t^7/2dt$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 5 hours ago









                            Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                            78.2k42867




                            78.2k42867



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167507%2fcalculus-parametric-curve-length%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                                Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                                Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її