Calculus II Question The Next CEO of Stack OverflowLength of an AstroidUnderstanding this calculus simplificationIntegration problem: $int x^2 -x 4^-x^2 dx$Finding the parametric form of a standard equationApplication of “twice the integral” even if the function is not graphically even?Find the length of the parametric curveFind the exact length of the parametric curve(Not sure what I'm doing wrong)Calculus 2 moments question.The length of a parametric curveParametric curve length - calculus

Is it ever safe to open a suspicious html file (e.g. email attachment)?

If a black hole is created from light, can this black hole then move at speed of light?

How do I transpose the 1st and -1th levels of an arbitrarily nested array?

How powerful is the invisibility granted by the Gloom Stalker ranger's Umbral Sight feature?

Elegant way to replace substring in a regex with optional groups in Python?

In excess I'm lethal

Is it professional to write unrelated content in an almost-empty email?

Is "for causing autism in X" grammatical?

Is there a difference between "Fahrstuhl" and "Aufzug"

Indicator light circuit

Help understanding this unsettling image of Titan, Epimetheus, and Saturn's rings?

Why do we use the plural of movies in this phrase "We went to the movies last night."?

Multiple labels for a single equation

What does "Its cash flow is deeply negative" mean?

WOW air has ceased operation, can I get my tickets refunded?

How did the Bene Gesserit know how to make a Kwisatz Haderach?

How to start emacs in "nothing" mode (`fundamental-mode`)

Would a completely good Muggle be able to use a wand?

How to count occurrences of text in a file?

Can we say or write : "No, it'sn't"?

What happened in Rome, when the western empire "fell"?

What does convergence in distribution "in the Gromov–Hausdorff" sense mean?

How do scammers retract money, while you can’t?

Are there any limitations on attacking while grappling?



Calculus II Question



The Next CEO of Stack OverflowLength of an AstroidUnderstanding this calculus simplificationIntegration problem: $int x^2 -x 4^-x^2 dx$Finding the parametric form of a standard equationApplication of “twice the integral” even if the function is not graphically even?Find the length of the parametric curveFind the exact length of the parametric curve(Not sure what I'm doing wrong)Calculus 2 moments question.The length of a parametric curveParametric curve length - calculus










2












$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
And I found
$$frac23cdot 17^3/2+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(fracdxdtright) = 24cdot t^3 $$
$$left(fracdydtright) = 24cdot t^5 $$
$$int_0^2sqrtleft(24cdot t^3right)^2+left(24cdot t^5right)^2dt$$
$$int_0^2sqrtleft(576cdot t^6right)+left(576cdot t^10right)dt$$
$$int_0^2sqrtleft(576cdot t^6right) cdot left(1+t^4right)dt$$
$$24+int_0^2sqrtleft(t^6right) cdot left(1+t^4right)dt$$



$$frac23cdot 17^3/2+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    1 hour ago







  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    1 hour ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    53 mins ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    52 mins ago















2












$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
And I found
$$frac23cdot 17^3/2+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(fracdxdtright) = 24cdot t^3 $$
$$left(fracdydtright) = 24cdot t^5 $$
$$int_0^2sqrtleft(24cdot t^3right)^2+left(24cdot t^5right)^2dt$$
$$int_0^2sqrtleft(576cdot t^6right)+left(576cdot t^10right)dt$$
$$int_0^2sqrtleft(576cdot t^6right) cdot left(1+t^4right)dt$$
$$24+int_0^2sqrtleft(t^6right) cdot left(1+t^4right)dt$$



$$frac23cdot 17^3/2+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    1 hour ago







  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    1 hour ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    53 mins ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    52 mins ago













2












2








2





$begingroup$


Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
And I found
$$frac23cdot 17^3/2+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(fracdxdtright) = 24cdot t^3 $$
$$left(fracdydtright) = 24cdot t^5 $$
$$int_0^2sqrtleft(24cdot t^3right)^2+left(24cdot t^5right)^2dt$$
$$int_0^2sqrtleft(576cdot t^6right)+left(576cdot t^10right)dt$$
$$int_0^2sqrtleft(576cdot t^6right) cdot left(1+t^4right)dt$$
$$24+int_0^2sqrtleft(t^6right) cdot left(1+t^4right)dt$$



$$frac23cdot 17^3/2+4-frac23$$










share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Find the length of the following parametric curve.



$$x(t)=5+6t^4 ,quad y(t)=5+4t^6 ,qquad 0  ≤  t  ≤  2.$$



I used the formula
$$int_0^2sqrtleft(fracdxdtright)^2+left(fracdydtright)^2dt$$
And I found
$$frac23cdot 17^3/2+4-frac23$$
However I got it wrong. I don't know where I went wrong. Any help would be apriciated.



My steps:
$$left(fracdxdtright) = 24cdot t^3 $$
$$left(fracdydtright) = 24cdot t^5 $$
$$int_0^2sqrtleft(24cdot t^3right)^2+left(24cdot t^5right)^2dt$$
$$int_0^2sqrtleft(576cdot t^6right)+left(576cdot t^10right)dt$$
$$int_0^2sqrtleft(576cdot t^6right) cdot left(1+t^4right)dt$$
$$24+int_0^2sqrtleft(t^6right) cdot left(1+t^4right)dt$$



$$frac23cdot 17^3/2+4-frac23$$







calculus integration






share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 48 mins ago









rash

585116




585116






New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 1 hour ago









curiousengcuriouseng

134




134




New contributor




curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






curiouseng is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    1 hour ago







  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    1 hour ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    53 mins ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    52 mins ago












  • 3




    $begingroup$
    What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
    $endgroup$
    – Ross Millikan
    1 hour ago







  • 1




    $begingroup$
    Isn't there a square root missing in your length formula?
    $endgroup$
    – John Wayland Bales
    1 hour ago






  • 1




    $begingroup$
    We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
    $endgroup$
    – David Peterson
    1 hour ago






  • 1




    $begingroup$
    @curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
    $endgroup$
    – John Omielan
    53 mins ago






  • 1




    $begingroup$
    @JohnOmielan that’s exactly what’s wrong
    $endgroup$
    – Shalop
    52 mins ago







3




3




$begingroup$
What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
$endgroup$
– Ross Millikan
1 hour ago





$begingroup$
What is 6t4? What is 4t6? Without seeing your work we can't see where you went wrong. Answer keys are wrong sometimes. You should have a square root of the sum of the squares in your integral.
$endgroup$
– Ross Millikan
1 hour ago





1




1




$begingroup$
Isn't there a square root missing in your length formula?
$endgroup$
– John Wayland Bales
1 hour ago




$begingroup$
Isn't there a square root missing in your length formula?
$endgroup$
– John Wayland Bales
1 hour ago




1




1




$begingroup$
We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
$endgroup$
– David Peterson
1 hour ago




$begingroup$
We probably cannot figure out what you did wrong unless you show the work ending with that as an answer..
$endgroup$
– David Peterson
1 hour ago




1




1




$begingroup$
@curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
$endgroup$
– John Omielan
53 mins ago




$begingroup$
@curiouseng At the start of your second last line, is "$24 + $" part what you actually used, or is it a typo as you meant it to be $24$ times the integral?
$endgroup$
– John Omielan
53 mins ago




1




1




$begingroup$
@JohnOmielan that’s exactly what’s wrong
$endgroup$
– Shalop
52 mins ago




$begingroup$
@JohnOmielan that’s exactly what’s wrong
$endgroup$
– Shalop
52 mins ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



Which gives us:



$$int_0^2 24sqrtt^6+t^10dt$$



Which, when integrated, gives us: $$68sqrt17-4$$



I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    55 mins ago










  • $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    54 mins ago


















2












$begingroup$

Line 4 should read $$int_t=0^2 sqrt576 t^6 + 576 t^10 , dt.$$ This is a typesetting error.



Line 5 is correct.



Line 6 should read $$24 int_t=0^2 sqrtt^6 (1+t^4) , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
$$beginalign*
24 int_t=0^2 sqrtt^6(1+t^4) , dt
&= 24 int_t=0^2 t^3 sqrt1+t^4 , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
&= 6 int_u=1^17 sqrtu , du \
&= 6 left[frac2u^3/23 right]_u=0^17 \
&= 4 (17^3/2 - 1) \
&= 68 sqrt17 - 4.
endalign*$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    curiouseng is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167826%2fcalculus-ii-question%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    2












    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrtt^6+t^10dt$$



    Which, when integrated, gives us: $$68sqrt17-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      55 mins ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      54 mins ago















    2












    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrtt^6+t^10dt$$



    Which, when integrated, gives us: $$68sqrt17-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      55 mins ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      54 mins ago













    2












    2








    2





    $begingroup$

    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrtt^6+t^10dt$$



    Which, when integrated, gives us: $$68sqrt17-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.






    share|cite|improve this answer









    $endgroup$



    Okay, start from the beginning $$x'(t)=24t^3; y'(t)=24t^5$$



    Which gives us:



    $$int_0^2 24sqrtt^6+t^10dt$$



    Which, when integrated, gives us: $$68sqrt17-4$$



    I don't, however, know where you went wrong. It could be either a sign error, or a calculation error.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 1 hour ago









    Bertrand Wittgenstein's GhostBertrand Wittgenstein's Ghost

    527217




    527217











    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      55 mins ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      54 mins ago
















    • $begingroup$
      Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
      $endgroup$
      – curiouseng
      55 mins ago










    • $begingroup$
      @curiouseng You are very welcome, regards!
      $endgroup$
      – Bertrand Wittgenstein's Ghost
      54 mins ago















    $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    55 mins ago




    $begingroup$
    Thank you for your help. I used an online integral calculator to see where I went wrong and it was a basic calculation mistake :( Again thank you for your time.
    $endgroup$
    – curiouseng
    55 mins ago












    $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    54 mins ago




    $begingroup$
    @curiouseng You are very welcome, regards!
    $endgroup$
    – Bertrand Wittgenstein's Ghost
    54 mins ago











    2












    $begingroup$

    Line 4 should read $$int_t=0^2 sqrt576 t^6 + 576 t^10 , dt.$$ This is a typesetting error.



    Line 5 is correct.



    Line 6 should read $$24 int_t=0^2 sqrtt^6 (1+t^4) , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



    You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
    $$beginalign*
    24 int_t=0^2 sqrtt^6(1+t^4) , dt
    &= 24 int_t=0^2 t^3 sqrt1+t^4 , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
    &= 6 int_u=1^17 sqrtu , du \
    &= 6 left[frac2u^3/23 right]_u=0^17 \
    &= 4 (17^3/2 - 1) \
    &= 68 sqrt17 - 4.
    endalign*$$






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      Line 4 should read $$int_t=0^2 sqrt576 t^6 + 576 t^10 , dt.$$ This is a typesetting error.



      Line 5 is correct.



      Line 6 should read $$24 int_t=0^2 sqrtt^6 (1+t^4) , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



      You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
      $$beginalign*
      24 int_t=0^2 sqrtt^6(1+t^4) , dt
      &= 24 int_t=0^2 t^3 sqrt1+t^4 , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
      &= 6 int_u=1^17 sqrtu , du \
      &= 6 left[frac2u^3/23 right]_u=0^17 \
      &= 4 (17^3/2 - 1) \
      &= 68 sqrt17 - 4.
      endalign*$$






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        Line 4 should read $$int_t=0^2 sqrt576 t^6 + 576 t^10 , dt.$$ This is a typesetting error.



        Line 5 is correct.



        Line 6 should read $$24 int_t=0^2 sqrtt^6 (1+t^4) , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



        You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
        $$beginalign*
        24 int_t=0^2 sqrtt^6(1+t^4) , dt
        &= 24 int_t=0^2 t^3 sqrt1+t^4 , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
        &= 6 int_u=1^17 sqrtu , du \
        &= 6 left[frac2u^3/23 right]_u=0^17 \
        &= 4 (17^3/2 - 1) \
        &= 68 sqrt17 - 4.
        endalign*$$






        share|cite|improve this answer









        $endgroup$



        Line 4 should read $$int_t=0^2 sqrt576 t^6 + 576 t^10 , dt.$$ This is a typesetting error.



        Line 5 is correct.



        Line 6 should read $$24 int_t=0^2 sqrtt^6 (1+t^4) , dt.$$ The use of the addition sign is incorrect because $24$ is a factor in the integrand, not a term.



        You do not demonstrate how to proceed from Line 6 to Line 7. I would complete the computation as follows:
        $$beginalign*
        24 int_t=0^2 sqrtt^6(1+t^4) , dt
        &= 24 int_t=0^2 t^3 sqrt1+t^4 , dt qquad (u = 1+t^4; ; du = 4t^3 , dt) \
        &= 6 int_u=1^17 sqrtu , du \
        &= 6 left[frac2u^3/23 right]_u=0^17 \
        &= 4 (17^3/2 - 1) \
        &= 68 sqrt17 - 4.
        endalign*$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 27 mins ago









        heropupheropup

        64.8k764103




        64.8k764103




















            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.












            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.











            curiouseng is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3167826%2fcalculus-ii-question%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

            Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

            199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單