Skip to main content

ნატურალური რიცხვი სექციების სია ნატურალური რიცხვების ისტორია და ნულის სტატუსი | ჩაწერის სისტემა | ალგებრული თვისებები | ფორმალური განსაზღვრებები | თვისებები | განზოგადებები | რესურსები ინტერნეტში | სანავიგაციო მენიუგასწორებაშიAxioms and Construction of Natural NumbersEssays on the Theory of Numbers

ყველა გასასწორებელი სტატიარიცხვთა თეორიასიმრავლეთა თეორია


რიცხვთა თეორიაშისიმრავლეთა თეორიასაკომპიუტერულ მეცნიერებაშიმარტივ რიცხვებადრიცხვთა თეორიისრამსეის თეორიაკომბინატორიკაშიბაბილონელებმაპოზიციური სისტემაძველ ეგვიპტელებსკარნაკიდანლუვრში0ოლმეკიმაიას ტომებიმესოამერიკასინდოელიბრაჰმაგუპტასგანკომპუტისტებიაღდგომადიონისე მცირითრომაული ციფრებისლათინურაბსტრაქტულიცნებებისძველ ბერძენპითაგორასაარქიმედესინდოეთშიჩინეთშიმესოამერიკაშისიმრავლეთა თეორიულიცარიელი სიმრავლისსიმრავლეთა თეორეტიკოსებილოგიკოსებიკომპუტერული მეცნიერებირიცხვთა თეორეტიკოსებისიმრავლისუსასრულოთვლადიკარდინალობაალეფ-ნულიშექცევადი ელემენტებისომეგარიგობითი რიცხვებისპეანოს პოსტულატებისსიმრავლეთა თეორიისმოდელებიპეანოს აქსიომებსიზომორფულიასიმრავლეთა თეორიშიბერტრანდ რასელსაფრეგესსიმრავლეთა ჩაწერის ფორმაგამოყოფის აქსიომითახალ საფუძვლებშიტიპების თეორიისმიმატებისკომუტაციურმონოიდებადნეიტრალური ელემენტითთავისუფალი მონოიდიკვეცადობის თვისებასმთელი რიცხვებიგამრავლებისკომუტაციურმარტივ რიცხვთამიმატებაგამრავლებაგადანაწილებადობის კანონშინახევარწრის≤გაყოფისკოეფიციენტიგაყოფის ალგორითმიგაყოდფადობაევკლიდეს ალგორითმიკომუტაციურ მონოიდებსნეიტრალური ელემენტითმიმდევრობაში










(function()var node=document.getElementById("mw-dismissablenotice-anonplace");if(node)node.outerHTML="u003Cdiv class="mw-dismissable-notice"u003Eu003Cdiv class="mw-dismissable-notice-close"u003E[u003Ca tabindex="0" role="button"u003Eდამალვაu003C/au003E]u003C/divu003Eu003Cdiv class="mw-dismissable-notice-body"u003Eu003Cdiv id="localNotice" lang="ka" dir="ltr"u003Eu003Cdiv class="layout plainlinks" align="center"u003Eდაუკავშირდით ქართულ ვიკიპედიას u003Ca href="https://www.facebook.com/georgianwikipedia" rel="nofollow"u003Eu003Cimg alt="Facebook icon.svg" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Facebook_icon.svg/14px-Facebook_icon.svg.png" decoding="async" width="14" height="14" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Facebook_icon.svg/21px-Facebook_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Facebook_icon.svg/28px-Facebook_icon.svg.png 2x" data-file-width="256" data-file-height="256" /u003Eu003C/au003E u003Cbu003Eu003Ca rel="nofollow" class="external text" href="https://www.facebook.com/georgianwikipedia"u003EFacebooku003C/au003Eu003C/bu003E-ის ოფიციალურ გვერდზე!nu003Cpu003Eu003Cbr /u003Enu003C/pu003Enu003C/divu003Eu003C/divu003Eu003C/divu003Eu003C/divu003E";());




ნატურალური რიცხვი




მასალა ვიკიპედიიდან — თავისუფალი ენციკლოპედია








Jump to navigation
Jump to search




ნატურალური რიცხვი — მთელი დადებითი რიცხვი (1, 2, 3, 4, ...) ან მთელი არა-უარყოფითი რიცხვია (0, 1, 2, 3, 4, ...). პირველი განსაზღვრება გამოიყენება რიცხვთა თეორიაში, მეორე კი სიმრავლეთა თეორიასა და კომპიუტერულ მეცნიერებაში.


ნატურალურ რიცხვებს აქვთ ორი ძირითადი დანიშნულება: მათი გამოყენება შეიძლება დასათვლელად („მაგიდაზე 3 ვაშლია“) და ასევე რიგობითობის მისანიჭებლად („ეს სიდიდით მე-3 ქალაქია ქვეყანაში“).


ნატურალური რიცხვების დაყოფას თვისებების მიხედვით, ისევე როგორც მარტივ რიცხვებად დანაწილება, რიცხვთა თეორიის შესწავლის საგანია. თვლასთან დაკავშირებული პრობლემები, მაგალითად რამსეის თეორია, ისწავლება კომბინატორიკაში.




ნატურალური რიცხვები შეიძლება გამოვიყენოთ დასათვლელად (ერთი ვაშლი, ორი ვაშლი, სამი ვაშლი, ...).




სექციების სია





  • 1 ნატურალური რიცხვების ისტორია და ნულის სტატუსი


  • 2 ჩაწერის სისტემა


  • 3 ალგებრული თვისებები


  • 4 ფორმალური განსაზღვრებები

    • 4.1 პეანოს აქსიომები


    • 4.2 აგებულებები სიმრავლეთა თეორიის მიხედვით

      • 4.2.1 სტანდარტული აგებულება


      • 4.2.2 სხვა აგებულებები




  • 5 თვისებები


  • 6 განზოგადებები


  • 7 რესურსები ინტერნეტში




ნატურალური რიცხვების ისტორია და ნულის სტატუსი |


ნატურალურ რიცხვებს დასაბამი აქვთ სიტყვებში რომლებიც საგნების დასათვლელად გამოიყენებოდა, საწყისი რიცხვითი სახელით ერთი.


პირველი მნიშვნელოვანი ნაბიჯი რიცხვთა სისტემის განზოგადებაში იყო ციფრების გამოყენება რაოდენობის გამოსახატავად. ამან განვითარების საშუალება მისცა რიცხვების ჩაწერის სისტემას გაცილებით უფრო დიდი რიცხვების გამოსახვისთვის. მაგალითად, ბაბილონელებმა განავითარეს მძლავრი აღრიცხვის პოზიციური სისტემა, რომელიც მნიშვნელოვანწილად შედგებოდა 1-დან 10-მდე ციფრებისგან. ძველ ეგვიპტელებს გააჩნდათ აღრიცხვის სისტემა, სხვადასხვა იეროგლიფებისაგან შემდგარი, რომელნიც 1-დან 10-მდე ციფრებს აღნიშნავდნენ და ასევე 10-ის ყველა ხარისხს მილიონამდე. წარწერა ქვაზე კარნაკიდან, რომელიც თარიღდება 1500 წლით ჩ.წ.აღ.-მდე და რომელიც ამჟამად ლუვრში ინახება, გამოსახავს 276-ს როგორც 2 ასეულს, 7 ათეულს და 6 ერთეულს; იგივენაირად 4622-საც.


გაცილებით გვიანდელი წარმოჩენა განზოგადების განვითარებაში იყო 0-ის აღნიშვნის იდეა თავისი ციფრით. ნული, როგორც ციფრი გამოიყენებოდა პოზიციურ სისტემაში ბაბილონელების მიერ ჯერ კიდევ 700 წ. ჩვ.წ აღ.-მდე, მაგრამ ისინი ცარიელს ტოვებდნენ იმ ადგილს, თუ ის იყო რიცხვის უკანასკნელი სიმბოლო. ოლმეკი და მაიას ტომები იყენებდნენ ნულს როგორც ცალკე ციფრს ჩვ.წ. აღ.-მდე პირველ საუკუნეში. ეს დამოუკიდებელი მიღწევა იყო, თუმცა ის არ გასცდენია მესოამერიკას. ცნების თანამედროვე გამოყენება სათავეს იღებს ინდოელი მათემატიკოსი ბრაჰმაგუპტასგან 628 წელს. მაგრამ, აღსანიშნავია, რომ კომპუტისტები (აღდგომა დღის გამომთვლელები), დაწყებული დიონისე მცირით 525 წელს, ხმარობდნენ ნულს ჩაწერისას რომაული ციფრების გამოუყენებლად. სამაგიეროდ ისინი იყენებდნენ ლათინურ სიტყვას "ნულუს"-ს ("nullus" - არაფერი).
ციფრების, როგორც აბსტრაქტული ცნებების პირველ სისტემატიკურ მოკვლევას მიაკუთვნებენ ძველ ბერძენ ფილოსოფოსებს, პითაგორასა და არქიმედეს. თუმცა, დამოუკიდებელ შესწავლებს ჰქონდათ ადგილი დაახლოებით იმავე პერიოდში ინდოეთში, ჩინეთში, მესოამერიკაში.


მეცხრამეტე საუკუნეში ნატურალური რიცხვების სიმრავლეთა თეორიული განმარტება განვითარდა. ამ განმარტებით, ნული (ცარიელი სიმრავლის აღმნიშვნელი) განეკთვნება ნატურალურ რიცხვებს. ამჟამად ნულს, ჩვეულებისამებრ მიაკუთვნებენ ნატურალურ რიცხვებს სიმრავლეთა თეორეტიკოსები, ლოგიკოსები და კომპუტერული მეცნიერები. სხვა მათემატიკოსები მაგალითად, რიცხვთა თეორეტიკოსები, ძველ ტრადიციას მისდევენ და ნატურალური რიცხვების პირველ წევრად 1-ს მიიჩნევენ.



ჩაწერის სისტემა |


მათემატიკოსები იყენებენ Ndisplaystyle mathbb N -ს ნატურალურ რიცხვთა სიმრავლის აღსანიშნავად. ეს სიმრავლე არის თვლადად უსასრულო: ის არის უსასრულო, მაგრამ თვლადი განსაზღვრების მიხედვით. ნატურალური რიცხვების რაოდენობა (იგივე კარდინალობა) აღინიშნება სიმბოლოთი ალეფ-ნული (ℵ0displaystyle aleph _0).


ბუნდოვნების გასაფანტავად, რომ ნული არის ან არ არის ჩათვლილი მოცემულ სიმრავლეში "0"-ს უმატებენ ინდექსად ან "*"-ს ზედა შტრიხად:



Ndisplaystyle mathbb N 0 = 0, 1, 2, ...  ; Ndisplaystyle mathbb N * = 1, 2, ... .

(ზოგჯერ ინდექსი ან ზედა შტრიხი "+" გამოიყენება "დადებითი"-ს აღსანიშნავად. თუმცა, ეს ხშირად გამოიყენება "არაუარყოფითი"-ს გამოსახვისთვის სხვა შემთხვევებში, როგორიც არის + = [0,∞) და + = 0, 1, 2,... , ყოველ შემთხვევაში ევროპულ ლიტერატურაში მაინც. სიმბოლო "*", როგორც წესი არის "ნულისაგან განსხვავებული"-ს, ან უფრო სწორად, შექცევადი ელემენტების აღმნიშვნელი სიმბოლო.


სიმრავლეთა თეორეტიკოსები ნატურალურ რიცხვთა სიმრავლეს საკმაოდ ხშირად გამოსახავენ ბერძნული ანბანის პატარა ასო "ომეგა"-თი: ω. ეს გამომდინარეობს რიგობითი რიცხვების გაიგივებიდან უფრო მცირე ყველა რიგობით რიცხვთა სიმრავლესთან. როდესაც ეს ჩაწერა გამოიყენება, ნული აუცილებლად იგულისხმება ნატურალურ რიცხვთა შორის.



ალგებრული თვისებები |






















შეკრებაგამრავლება

ჯამურობა:

a + b   ნატურალური რიცხვია

a × b   ნატურალური რიცხვია

ჯუფთებადობა:

a + (b + c)  =  (a + b) + c

a × (b × c)  =  (a × b) × c

გადანაცვლებადობა:

a + b  =  b + a

a × b  =  b × a

ნეიტრალური ელემენტის არსებობა:

a + 0  =  a

a × 1  =  a

გადანაწილებადობა:

a × (b + c)  =  (a × b) + (a × c)
ნულზე გაყოფა არ შეიძლება:თუ ab = 0, მაშინ ან a = 0 ან b = 0 (ან ორივე)


ფორმალური განსაზღვრებები |


Searchtool-80%.pngმთავარი სტატია : ნატურალური რიცხვის სიმრავლეთა თეორისეული განსაზღვრება.

ისტორიულად, ნატურალური რიცხვის საბოლოო განმარტება გარკვეული სიძნელეებით მოხერხდა. პეანოს პოსტულატების მიხედვით ყოველი მომდევნო პირობა უნდა იქნას დაკმაყოფილებული. გარკვეული აგებულებები აჩვენებენ, რომ სიმრავლეთა თეორიის მოცემულობით, პეანოს პოსტულატების მოდელები უნდა არსებობდნენ.



პეანოს აქსიომები |


  • არსებობს ნატურალური რიცხვი 0.

  • ყოველი ნატურალური რიცხვი a-სთვის არსებობს მომდევნო ნატურალური რიცხვი S(a).

  • არ არსებობს ნატურალური რიცხვი, რომლის მომდევნო 0-ია.

  • განსხვავებულ ნატურალურ რიცხვებს განსხვავებული ნატურალური რიცხვი მოსდევთ: თუ ab, მაშინ S(a) ≠ S(b).

  • თუ რაიმე თვისება ახასიათებს 0-ს და ყოველ მომდევნო ნატურალურ რიცხვს, მაშინ ის ახასიათებს ყველა ნატურალურ რიცხვს. (ეს პოსტულატი ადასტურებს, რომ მათემატიკური ინდუქციის ტექნიკა მართებულია.)

უნდა აღინიშნოს, რომ "0" ზემოთ ხსენებულ განმარტებებში არა აუცილებლად ნიშნავს ჩვენთვის ჩვეულებისამებრ ცნობილ ციფრ ნულს. "0" უბრალოდ ნიშნავს რაღაც ობიექტს, რომელიც შესაფერის მომდევნო ფუნქციასთან შერწყმისას აკმაყოფილებს პეანოს აქსიომებს. ყველა სისტემა რომელიც აკმაყოფილებს ამ აქსიომებს იზომორფულია. სახელწოდება "0" აქ გამოყენებულია პირველი წევრის აღსანიშნავად, რომელიც არაფრის მომდევნოა. მაგალითისვის, ერთით დაწყებული ნატურალური რიცხვებიც აკმაყოფილებენ ამ აქსიომებს.



აგებულებები სიმრავლეთა თეორიის მიხედვით |



სტანდარტული აგებულება |


სტანდარტული აგებულება სიმრავლეთა თეორიში, ფონ ნეიმანის რიგობითის კონსტრუქციის მიხედვით ნატურალურ რიცხვებს განსაზღვრავს, როგორც:


შემოვიტანოთ შემდეგი აღნიშვნა, 0 :=  , ცარიელი სიმრავლე,

და განვსაზღვროთ S(a) = aa, a-ს ყოველი სიმრავლისთვის. S(a) არის a-ს მომდევნო რიცხვი და S არის მიმდევრობის ფუნქცია.

თუ უსასრულობის აქსიობა მართებულია, მაშინ ყველა ნატურალური რიცხვის სიმრავლე არსებობს და წარმოადგენს ყველა იმ სიმრავლის გადაკვეთას, რომლებიც შეიცავენ 0-ს და განეკუთვნებიან ამ მიმდევრობის ფუნქციას.

თუ ყველა ნატურალური რიცხვების სიმრავლე არსებობს, მაშინ ის აკმაყოფილებს პეანოს აქსიომებს.

მაშინ ყოველი ნატურალური რიცხვი უდრის ნატურალური რიცხვების სიმრავლეს გამოკლებული თვით ეს რიცხვი, ისე რომ

  • 0 =  

  • 1 = 0 =  

  • 2 = 0,1 = 0, 0 =  ,  

  • 3 = 0,1,2 = 0, 0, 0, 0 =  ,  ,  ,  


  • n = 0,1,2,...,n−2,n−1 = 0,1,2,...,n−2 ∪ n−1 = (n−1) ∪ n−1

და ასე შემდეგ. ეს არის სწორედ ის, როცა ნატურალური რიცხვი გამოყენებულია როგორც სიმრავლე. ამ განსაზღვრების ქვეშ, n სიმრავლეში ზუსტად n რიცხვია (გულუბრყვილო გაგებით) და nm (გულუბრყვილო გაგებით) მაშინ და მხოლოდ მაშინ, n არის m-ის ქვესიმრავლე.
ამავე განსაზღვრებით, Rn -ის განსხვავებული ინტერპრეტაციები შეიძლება ემთხვევოდეს.

უსასრულობის აქსიომა რომც არ იყოს მართებული და ყველა ნატურალური რიცხვის სიმრავლე რომც არ არსებობდეს, მაინც იქნება შესაძლებელი იმის განსაზღვრა, თუ რას ნიშნავს იყო ერთ-ერთი ამ სიმრავლეთაგანი. n სიმრავლე არის ნატურალური რიცხვი ნიშნავს, რომ ეს არის 0 (ცარიელი) ან მომდევნო რიცხვი, და რომ მისი თითოეული ელემენტი არის ან 0, ან რომელიმე სხვა ელემენტის მომდევნო რიცხვი.


სხვა აგებულებები |


მიუხედავად იმისა, რომ სტანდარტული აგებულება მოსახერხებელია, ერთადერთი შესაძლო აგებულება არ არის. მაგალითად:


შესაძლებელია დავუშვათ, რომ 0 =

და and S(a) = a,

მაშინ
0 =

1 = 0 =

2 = 1 = , etc.


ან შეგვიძლია განვსაზღვროთ, რომ 0 =


და S(a) = a U a,

მივიღებთ
0 =

1 = , 0 = ,

2 = , 0, 1, etc.


ნატურალური რიცხვის პირველ სიმრავლეთა თეორისეულ განსაზღვრებას მიაკუთვნებენ ბერტრანდ რასელსა და ფრეგეს, თუმცა ამას ეჭვის ქვეშ აყენებენ, რომელთა მიხედვით ნატურალური რიცხვი n არის იმ სიმრავლეთა სიმრავლე, რომლებიც შეიცავენ n ელემენტებს. ეს შეიძლება წრიულად ჩანდეს, თუმცა შეიძლება მკაცრი განსაზღვრების ჩამოყალიბება. 0 აღვნიშნოდ, როგორც displaystyle (0 ელემენტისგან შემდგარ სიმრავლეთა სიმრავლე), ხოლო σ(A)displaystyle sigma (A) (A-ს ნებისმიერი სიმრავლისთვის), როგორც x∪y∣x∈A∧y∉xdisplaystyle xcup ymid xin Awedge ynot in x (იხ. სიმრავლეთა ჩაწერის ფორმა). მაშინ 0 იქნება 0 ელემენტის შემცველი ყველა სიმრავლის სიმრავლე, 1=σ(0)displaystyle 1=sigma (0) იქნება ყველა იმ სიმრავლის სიმრავლე, რომლებიც შედგებიან 1 ელემენტისაგან, 2=σ(1)displaystyle 2=sigma (1) - სიმრავლეთა სიმრავლე, რომლებიც შედგებიან 2 ელემენტისგან და ა.შ. ყველა ნატურალური რიცხვის სიმრავლე შეიძლება განისაზღვროს, როგორც ყველა სიმრავლის გადაკვეთა, რომლებიც შეიცავენ 0-ს როგორც ელემენტს და მოქცეულნი არიან σdisplaystyle sigma -ს ქვეშ (რაც ნიშნავს, რომ თუ სიმრავლე შეიცავს n-ს, ის aსევე შეიცავს σ(n)displaystyle sigma (n)-საც). ამგვარი განსაზღვრება შეუსაბამოა ჩვეულებრივი სიმრავლეთა აქსიომატიკური თეორიის პირობებში მასში გამოყენებული შემადგენლების სიდიდის გამო (ის ასევე შეუსაბამოა ნებისმიერ სირავლეთა თეორიასთან გამოყოფის აქსიომით); მაგრამ ის გამოდგება ახალ საფუძვლებში (ასევე მსგავს, რაციონალურად ცნობილ სისტემებში) და ტიპების თეორიის ზოგიერთ სისტემაში.


ამ სტატიის დარჩენილ ადგილებში ჩვენ ვიყენებთ ზემოხსენებულ სტანდარტულ აგებულებას.



თვისებები |


შესაძლებელია ნატურალური რიცხვების მიმატების შემდეგნაირად აღნიშვნა: a + 0 = a და a + S(b) = S(a + b) ნებისმიერი a, b-სთვის. ეს აქცევს ნატურალურ რიცხვებს (N, +) კომუტაციურ მონოიდებად ნეიტრალური ელემენტით 0. ე.წ. თავისუფალი მონოიდი ერთი მწარმოებლით. მონოიდი აკმაყოფილებს კვეცადობის თვისებას და შესაძლებელია მისი ჯგუფში გაერთიანება. უმცირესი ჯფუფი, რომელიც შეიცავს ნატურალურ რიცხვებს არის მთელი რიცხვები.


თუ შემოვიტანთ აღნიშვნას 1 := S(0), მაშინ b + 1 = b + S(0) = S(b + 0) = S(b). სადაც, b + 1 არის უბრალოდ b-ს მომდევნო რიცხვი.


ანალოგიური ხერხით ჩვენ შეგვიძლია გამოვსახოთ გამრავლების მოქმედებაც: a × 0 = 0 და a × S(b) =(a × b) + a. ეს აქცევს (N*, ×) თავისუფალ კომუტაციურ მონოიდად, ნეიტრალური ელემენტით 1; ამ მონოიდის მწარმოებელი არის მარტივ რიცხვთა სიმრავლე. მიმატება და გამრავლება ურთიერთშეთავსებადნი არიან და ეს გამოიხატება გადანაწილებადობის კანონში: a × (b + c) = (a × b) + (a × c). მიმატებისა და გამრავლების თვისებების გამო ნატურალური რიცხვები განეკუთვნებიან კომუტაციური ნახევარწრის ინსტანციას. ნახევარწრეები არიან ნატურალური რიცხვების ალგებრული განზოგადებები, სადაც გამრავლება არააუცილებლად არის კომუტაციური.


ნატურალური რიცხვების "0-ის გარეშე" ინტერპრეტაციისას, როდესაც ისინი იწყებიან 1-დან, +-ის და ×-ის განსაზღვრებები იგივეა იმის გამოკლებით, რომ ვიწყებთ a + 1 = S(a) and a × 1 = a - დან.


აქედან მოყოლებული სტატიაში გამოყენებული იქნება ab, რაც a × b-ს ანალოგიაა. ასევე დაცული იქნება მათემატიკურ მოქმედებათა სტანდარტული თანამიმდევრობა.


ტოლფასად, ნატურალური რიცხვები უტოლობის აღმნიშვნელი ab გამოიყენება მაშინ და მხოლოდ მაშინ, როდესაც არსებობს სხვა ნატურალური რიცხვი c, a + c = b გარემოებით. ეს გარემოება შეთავსებადია არითმეტიკულ მოქმედებებთან შემდეგნაირი დამოკიდებულებით: თუ a, b და c ნატურალური რიცხვებია და ab, მაშინ a + cb + c და acbc. ნატურალური რიცხვების მნიშვნელოვანი თვისებაა ის, რომ ისინი მიმდევრობით კეთილგაწყობილნი არიან: ნატურალური რიცხვების ყოველი არაცარიელი სიმრავლე შეიცავს სულ მცირე ერთ ელემენტს მაინც. მიმდევრობით კეთილგაწყობილი სიმრავლეები თანრიგს განსაზღვრავს რიგობითი რიცხვი; ნატურალური რიცხვების შემთხვევაში ის გამოისახება "ωdisplaystyle omega "-თი.


იმის გათვალისწინებით, რომ ზოგჯერ შეუძლებელია ერთი ნატურალური რიცხვის მეორეთი გაყოფით ისეცვ ნატურალური რიცხვის მიღება, ნაშთით გაყოფის პროცედურა გვევლინება შემცვლელად; ნებისმიერი ორი ნატურალური რიცხვისათვის a და b, როცა b ≠ 0, შესაძლებელია ვიპოვოთ ნატურალური რიცხვები q და r, რომლებიც აკმაყოფილებენ



a = bq + r, სადაც r < b გამოსახულებას.

q-ს ეწოდება კოეფიციენტი, ხოლო r-ს კი -- a-ს b-ზე გაყოფის შედეგად მიღებული ნაშთი. q და r უნიკალურად განისაზღვრებიან a-სა b-ს მეშვეობით. ეს გაყოფის ალგორითმი არის გზამკვლევი სხვა თვისებებისაკენ (გაყოდფადობა), ალგორითმებისკენ (როგორიც არის, მაგალითად ევკლიდეს ალგორითმი), და იდეებისაკენ რიცხვთა თეორიაში.


ნატურალური რიცხვები, ნულის ჩათვლით, ქმნიან კომუტაციურ მონოიდებს მიმატების (ნეიტრალური ელემენტით 0) და გამრავლების (ნეიტრალური ელემენტით ერთი) პირობებში.



განზოგადებები |


გამოყენების მიხევით ორი ძირითადი განზოგადება ამოტივტივდება:


  • ნატურალური რიცხვი შეიძლება გამოვიყენოთ სასრული სიმრავლის სიდიდის გამოსახატავად; ზოგადად კი, რაოდენობითი რიცხვი აგრეთვე არის უსასრულო სიმრავლესთან შეთავსებადი სიდიდის საზომი; ეს გულისხმობს 'სიდიდეს', რომლის პირობებშიც, თუ ორ სიმრავლეს შორის ბიექციური არეკვლა არსებობს მათ გააჩნიათ იგივე სიდიდე. ნატურალურ რიცხვთა სიმრავლეს, ისევეე როგორც ნებისმიერ დათვლადად უსასრულო სიმრავლეს აქვს კარდინალურობა ალეფ-ნული (ℵ0displaystyle aleph _0).


  • რიგობითი რიცხვები, "პირველი", "მეორე", "მესამე" შეიძლება მივაკუთვნოთ სასრული უტოლობის სიმრავლეების ელემენტებს, ასევე სადაც ნატურალური რიცხვებისმაგვარი მიმდევრობით განლაგებული დათვლადად უსასრულო სიმრავლეების ელემენტებს. ეს შეიძლება განზოგადდეს რიგობითი რიცხვების მიმართ, რომლებიც გამოსახავენ მიმდევრობით განლეგებულ სიმრავლეში კონკრეტული ელემენტის პოზიციას. რიგობითი რიცხვი ასევეე გამოიყენება მიმდევრობით განლაგებული სიმრავლის სიდიდის გამოსახატავად, რაოდენობითი რიცხვისაგან განსხვავებულ სტილში: თუ ორ მიმდევრობით განლეგებულ სიმრავლეს შორის არსებობს რიგობითი იზომორფიზმი მაშინ მათ საერთო რიგობითი რიცხვი გააჩნიათ. პირველი რიგობითი რიცხვი, რომელიც არ არის ნატურალური რიცხვი - ωdisplaystyle omega -ა; რომელიც იმთავითვე ნატურალური რიცხვების სიმრავლის რიგობითობის აღმნიშვნელია.

საჭოროა ერთმანეთისგან განვასხვავოთ ℵ0displaystyle aleph _0 და ωdisplaystyle omega , რადგან ბევრ მიმდევრობით განლაგებულ სიმრავლეს რაოდენობითი რიცხვით ℵ0displaystyle aleph _0 აქვთ ωdisplaystyle omega -ზე დიდი რიგობითი რიცხვი. მაგალითად, ωωω6+42⋅1729+ω9+88⋅3+ωωω⋅5+65537displaystyle omega ^omega ^omega 6+42cdot 1729+omega ^9+88cdot 3+omega ^omega ^omega cdot 5+65537; ωdisplaystyle omega არის უმცირესი რიგობითი რიცხვი.


სასრული მიმდევრობით განლაგებული სიმრავლეებისთვის არსებობს ერთი-ერთთან თანხვედრა რაოდენობით და რიგობით რიცხვებს შორის; მაშასადამე, შეიძლება ორივე ერთი და იგივე ნატურალური რიცხვით გამოისახოს, სიმრავლის ელემენტების რაოდენობით. ეს რიცხვი ასევე შეიძლება გამოყენებულ იქნას ელემენტის პოზიციის დასაფიქსირებლად უფრო დიდ სასრულ, ან უსასრულო მიმდევრობაში.



რესურსები ინტერნეტში |



Commons-logo.svg

ვიკისაწყობში? არის გვერდი თემაზე:
ნატურალური რიცხვი



  • Axioms and Construction of Natural Numbers


  • Essays on the Theory of Numbers by Richard Dedekind at Project Gutenberg


(RLQ=window.RLQ||[]).push(function()mw.log.warn("Gadget "ReferenceTooltips" was not loaded. Please migrate it to use ResourceLoader. See u003Chttps://ka.wikipedia.org/wiki/%E1%83%A1%E1%83%9E%E1%83%94%E1%83%AA%E1%83%98%E1%83%90%E1%83%9A%E1%83%A3%E1%83%A0%E1%83%98:Gadgetsu003E."););


მოძიებულია „https://ka.wikipedia.org/w/index.php?title=ნატურალური_რიცხვი&oldid=3694281“-დან













სანავიგაციო მენიუ



























(RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.124","walltime":"0.185","ppvisitednodes":"value":470,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":7148,"limit":2097152,"templateargumentsize":"value":2211,"limit":2097152,"expansiondepth":"value":9,"limit":40,"expensivefunctioncount":"value":0,"limit":500,"unstrip-depth":"value":0,"limit":20,"unstrip-size":"value":923,"limit":5000000,"entityaccesscount":"value":0,"limit":400,"timingprofile":["100.00% 34.092 1 -total"," 26.01% 8.866 1 თარგი:მთავარი"," 22.22% 7.574 1 თარგი:Commons_category"," 20.71% 7.060 1 თარგი:ექსპერტი"," 15.51% 5.286 2 თარგი:Ambox"," 13.97% 4.762 1 თარგი:მულტიპარამეტრი-ბმულით"," 12.53% 4.270 1 თარგი:გასწორება"," 10.57% 3.604 2 თარგი:Unicode"," 7.63% 2.600 1 თარგი:Commons"],"cachereport":"origin":"mw1306","timestamp":"20190914042733","ttl":2592000,"transientcontent":false););"@context":"https://schema.org","@type":"Article","name":"u10dcu10d0u10e2u10e3u10e0u10d0u10dau10e3u10e0u10d8 u10e0u10d8u10eau10eeu10d5u10d8","url":"https://ka.wikipedia.org/wiki/%E1%83%9C%E1%83%90%E1%83%A2%E1%83%A3%E1%83%A0%E1%83%90%E1%83%9A%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%98","sameAs":"http://www.wikidata.org/entity/Q21199","mainEntity":"http://www.wikidata.org/entity/Q21199","author":"@type":"Organization","name":"Contributors to Wikimedia projects","publisher":"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":"@type":"ImageObject","url":"https://www.wikimedia.org/static/images/wmf-hor-googpub.png","datePublished":"2006-06-12T22:07:58Z","dateModified":"2019-06-22T19:28:14Z","image":"https://upload.wikimedia.org/wikipedia/commons/c/cf/Three_apples.svg"(RLQ=window.RLQ||[]).push(function()mw.config.set("wgBackendResponseTime":131,"wgHostname":"mw1331"););

Popular posts from this blog

Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

Tom Holland Mục lục Đầu đời và giáo dục | Sự nghiệp | Cuộc sống cá nhân | Phim tham gia | Giải thưởng và đề cử | Chú thích | Liên kết ngoài | Trình đơn chuyển hướngProfile“Person Details for Thomas Stanley Holland, "England and Wales Birth Registration Index, 1837-2008" — FamilySearch.org”"Meet Tom Holland... the 16-year-old star of The Impossible""Schoolboy actor Tom Holland finds himself in Oscar contention for role in tsunami drama"“Naomi Watts on the Prince William and Harry's reaction to her film about the late Princess Diana”lưu trữ"Holland and Pflueger Are West End's Two New 'Billy Elliots'""I'm so envious of my son, the movie star! British writer Dominic Holland's spent 20 years trying to crack Hollywood - but he's been beaten to it by a very unlikely rival"“Richard and Margaret Povey of Jersey, Channel Islands, UK: Information about Thomas Stanley Holland”"Tom Holland to play Billy Elliot""New Billy Elliot leaving the garage"Billy Elliot the Musical - Tom Holland - Billy"A Tale of four Billys: Tom Holland""The Feel Good Factor""Thames Christian College schoolboys join Myleene Klass for The Feelgood Factor""Government launches £600,000 arts bursaries pilot""BILLY's Chapman, Holland, Gardner & Jackson-Keen Visit Prime Minister""Elton John 'blown away' by Billy Elliot fifth birthday" (video with John's interview and fragments of Holland's performance)"First News interviews Arrietty's Tom Holland"“33rd Critics' Circle Film Awards winners”“National Board of Review Current Awards”Bản gốc"Ron Howard Whaling Tale 'In The Heart Of The Sea' Casts Tom Holland"“'Spider-Man' Finds Tom Holland to Star as New Web-Slinger”lưu trữ“Captain America: Civil War (2016)”“Film Review: ‘Captain America: Civil War’”lưu trữ“‘Captain America: Civil War’ review: Choose your own avenger”lưu trữ“The Lost City of Z reviews”“Sony Pictures and Marvel Studios Find Their 'Spider-Man' Star and Director”“‘Mary Magdalene’, ‘Current War’ & ‘Wind River’ Get 2017 Release Dates From Weinstein”“Lionsgate Unleashing Daisy Ridley & Tom Holland Starrer ‘Chaos Walking’ In Cannes”“PTA's 'Master' Leads Chicago Film Critics Nominations, UPDATED: Houston and Indiana Critics Nominations”“Nominaciones Goya 2013 Telecinco Cinema – ENG”“Jameson Empire Film Awards: Martin Freeman wins best actor for performance in The Hobbit”“34th Annual Young Artist Awards”Bản gốc“Teen Choice Awards 2016—Captain America: Civil War Leads Second Wave of Nominations”“BAFTA Film Award Nominations: ‘La La Land’ Leads Race”“Saturn Awards Nominations 2017: 'Rogue One,' 'Walking Dead' Lead”Tom HollandTom HollandTom HollandTom Hollandmedia.gettyimages.comWorldCat Identities300279794no20130442900000 0004 0355 42791085670554170004732cb16706349t(data)XX5557367