Isn't this a trivial corollary?Calculus on surfaces and chain ruleConstructing submanifolds. Did I understand this right?Some trivial questions about Tangent SpacesHow to see this is a normal vector field?Finding tangent plane to $2$ dimensional submanifold of $mathbbR^4$Generic condition for vector fields/normal sectionsHow to recover the tangent space from the metricInequality for gradients under different metricsShow that if $f$ is a smooth function, $M$ is a manifold and $x$ is a local extremum of $f$ on $M$, then $D_f(x)(v) = 0$ in the tangent space.Why $dim(ker T_z f)=dim(T_z(f^-1(c)))$?
Hot coffee brewing solutions for deep woods camping
Can ADFS connect to other SSO services?
Catching generic Exception in a toString implementation - bad practice?
Why do some games show lights shine through walls?
What are the benefits of using the X Card safety tool in comparison to plain communication?
Isn't this a trivial corollary?
Does Marvel have an equivalent of the Green Lantern?
Unusual mail headers, evidence of an attempted attack. Have I been pwned?
Fedora boot screen shows both Fedora logo and Lenovo logo. Why and How?
In the Marvel universe, can a human have a baby with any non-human?
Why is Madam Hooch not a professor?
Inverse-quotes-quine
Links to webpages in books
Why is the Turkish president's surname spelt in Russian as Эрдоган, with г?
Require advice on power conservation for backpacking trip
Is adding a new player (or players) a DM decision, or a group decision?
Why is there no havdallah when going from Yom Tov into Shabbat?
How come I was asked by a CBP officer why I was in the US?
First-year PhD giving a talk among well-established researchers in the field
Low-gravity Bronze Age fortifications
How to split an equation over two lines?
How well known and how commonly used was Huffman coding in 1979?
Is there a maximum distance from a planet that a moon can orbit?
Is there any evidence that the small canisters (10 liters) of 95% oxygen actually help with altitude sickness?
Isn't this a trivial corollary?
Calculus on surfaces and chain ruleConstructing submanifolds. Did I understand this right?Some trivial questions about Tangent SpacesHow to see this is a normal vector field?Finding tangent plane to $2$ dimensional submanifold of $mathbbR^4$Generic condition for vector fields/normal sectionsHow to recover the tangent space from the metricInequality for gradients under different metricsShow that if $f$ is a smooth function, $M$ is a manifold and $x$ is a local extremum of $f$ on $M$, then $D_f(x)(v) = 0$ in the tangent space.Why $dim(ker T_z f)=dim(T_z(f^-1(c)))$?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
Let $U subseteq mathbb R^n$ be an open subset and let $M subseteq U$ be a $k$-dimensional submanifold of $mathbb R^n$. Consider a differentiable function $f: U longrightarrow mathbb R$. There's a corollary that states, that if $f big|_M$ takes on a local extremum at a point $p in M$, then the gradient $nabla f(p)$ is normal to $M$ at $p$, i.e. $nabla f(p) perp T_pM$, where $T_pM$ is the tangent space. I've studied and understood the (short) proof, but isn't this statement absolutely trivial or have I got things mixed up? Let me explain: Assuming $p$ is an extremum, it follows that the differential vanishes, i.e. $nabla f(p) = 0$, since this is a necessary condition. But the zero vector is orthogonal to everything. So what's the point of this corollary?
derivatives differential-geometry orthogonality submanifold tangent-spaces
$endgroup$
add a comment |
$begingroup$
Let $U subseteq mathbb R^n$ be an open subset and let $M subseteq U$ be a $k$-dimensional submanifold of $mathbb R^n$. Consider a differentiable function $f: U longrightarrow mathbb R$. There's a corollary that states, that if $f big|_M$ takes on a local extremum at a point $p in M$, then the gradient $nabla f(p)$ is normal to $M$ at $p$, i.e. $nabla f(p) perp T_pM$, where $T_pM$ is the tangent space. I've studied and understood the (short) proof, but isn't this statement absolutely trivial or have I got things mixed up? Let me explain: Assuming $p$ is an extremum, it follows that the differential vanishes, i.e. $nabla f(p) = 0$, since this is a necessary condition. But the zero vector is orthogonal to everything. So what's the point of this corollary?
derivatives differential-geometry orthogonality submanifold tangent-spaces
$endgroup$
add a comment |
$begingroup$
Let $U subseteq mathbb R^n$ be an open subset and let $M subseteq U$ be a $k$-dimensional submanifold of $mathbb R^n$. Consider a differentiable function $f: U longrightarrow mathbb R$. There's a corollary that states, that if $f big|_M$ takes on a local extremum at a point $p in M$, then the gradient $nabla f(p)$ is normal to $M$ at $p$, i.e. $nabla f(p) perp T_pM$, where $T_pM$ is the tangent space. I've studied and understood the (short) proof, but isn't this statement absolutely trivial or have I got things mixed up? Let me explain: Assuming $p$ is an extremum, it follows that the differential vanishes, i.e. $nabla f(p) = 0$, since this is a necessary condition. But the zero vector is orthogonal to everything. So what's the point of this corollary?
derivatives differential-geometry orthogonality submanifold tangent-spaces
$endgroup$
Let $U subseteq mathbb R^n$ be an open subset and let $M subseteq U$ be a $k$-dimensional submanifold of $mathbb R^n$. Consider a differentiable function $f: U longrightarrow mathbb R$. There's a corollary that states, that if $f big|_M$ takes on a local extremum at a point $p in M$, then the gradient $nabla f(p)$ is normal to $M$ at $p$, i.e. $nabla f(p) perp T_pM$, where $T_pM$ is the tangent space. I've studied and understood the (short) proof, but isn't this statement absolutely trivial or have I got things mixed up? Let me explain: Assuming $p$ is an extremum, it follows that the differential vanishes, i.e. $nabla f(p) = 0$, since this is a necessary condition. But the zero vector is orthogonal to everything. So what's the point of this corollary?
derivatives differential-geometry orthogonality submanifold tangent-spaces
derivatives differential-geometry orthogonality submanifold tangent-spaces
asked 8 hours ago
playdisplaydis
394 bronze badges
394 bronze badges
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
$endgroup$
add a comment |
$begingroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3269951%2fisnt-this-a-trivial-corollary%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
$endgroup$
add a comment |
$begingroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
$endgroup$
add a comment |
$begingroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
$endgroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
answered 8 hours ago
José Carlos SantosJosé Carlos Santos
194k24 gold badges152 silver badges269 bronze badges
194k24 gold badges152 silver badges269 bronze badges
add a comment |
add a comment |
$begingroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
$endgroup$
add a comment |
$begingroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
$endgroup$
add a comment |
$begingroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
$endgroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
answered 8 hours ago
MaxMax
19.4k1 gold badge12 silver badges46 bronze badges
19.4k1 gold badge12 silver badges46 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3269951%2fisnt-this-a-trivial-corollary%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown