5 cars in a roundabout trafficHow to lock a shared artefactMaximum time for ants to fall off stickCross-road optimization - what is the proper way to solve this type of puzzle?Whose lock is lock-ier?Make 11 from five identical digitsQuick!!! You got only 30 secondsHow does the Kangaroo cross the Highway?Journey from Somewhere to ElsewhereGuide the dots to land on the portals at the same timeTwo Users share One Recharge Cord

Does squid ink pasta bleed?

What is the line crossing the Pacific Ocean that is shown on maps?

C-152 carb heat on before landing in hot weather?

Short and long term plans in a closed game in the Sicilian Defense

Impossible darts scores

Change CPU MHz from Registry

What reason would an alien civilization have for building a Dyson Sphere (or Swarm) if cheap Nuclear fusion is available?

Animation advice please

Through the Looking-Glass

Should I include salary information on my CV?

What do you call a weak person's act of taking on bigger opponents?

Why is Madam Hooch not a professor?

When is the original BFGS algorithm still better than the Limited-Memory version?

Going to get married soon, should I do it on Dec 31 or Jan 1?

What is the legal status of travelling with (unprescribed) methadone in your carry-on?

Character discovers anti gravity emitters, flies a shipping container into space and docks with space station

Is it damaging to turn off a small fridge for two days every week?

MH370 blackbox - is it still possible to retrieve data from it?

5 cars in a roundabout traffic

No IMPLICIT_CONVERSION warning in this query plan

When is it ok to add filler to a story?

Can a Horncaller control a Druid who is using Wild Shape?

Can the US president have someone sent to jail?

What are the penalties for overstaying in USA?



5 cars in a roundabout traffic


How to lock a shared artefactMaximum time for ants to fall off stickCross-road optimization - what is the proper way to solve this type of puzzle?Whose lock is lock-ier?Make 11 from five identical digitsQuick!!! You got only 30 secondsHow does the Kangaroo cross the Highway?Journey from Somewhere to ElsewhereGuide the dots to land on the portals at the same timeTwo Users share One Recharge Cord






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$



Five cars are driving in a roundabout traffic at the same moment. Each comes from an other direction, and drives less than one full round. Also each car leave the roundabout traffic in an other direction than the other. The cars are forbidden to pass cars in the roundabout traffic. They can leave the roundabout whenever they want, but they drive less than one full round, and in the end all cars are driving in differnt directions.




Question:




How many possible combinations are there for the cars to leave the roundabout ? Give a proof.




enter image description here










share|improve this question









New contributor



Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$


















    2












    $begingroup$



    Five cars are driving in a roundabout traffic at the same moment. Each comes from an other direction, and drives less than one full round. Also each car leave the roundabout traffic in an other direction than the other. The cars are forbidden to pass cars in the roundabout traffic. They can leave the roundabout whenever they want, but they drive less than one full round, and in the end all cars are driving in differnt directions.




    Question:




    How many possible combinations are there for the cars to leave the roundabout ? Give a proof.




    enter image description here










    share|improve this question









    New contributor



    Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$














      2












      2








      2





      $begingroup$



      Five cars are driving in a roundabout traffic at the same moment. Each comes from an other direction, and drives less than one full round. Also each car leave the roundabout traffic in an other direction than the other. The cars are forbidden to pass cars in the roundabout traffic. They can leave the roundabout whenever they want, but they drive less than one full round, and in the end all cars are driving in differnt directions.




      Question:




      How many possible combinations are there for the cars to leave the roundabout ? Give a proof.




      enter image description here










      share|improve this question









      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$





      Five cars are driving in a roundabout traffic at the same moment. Each comes from an other direction, and drives less than one full round. Also each car leave the roundabout traffic in an other direction than the other. The cars are forbidden to pass cars in the roundabout traffic. They can leave the roundabout whenever they want, but they drive less than one full round, and in the end all cars are driving in differnt directions.




      Question:




      How many possible combinations are there for the cars to leave the roundabout ? Give a proof.




      enter image description here







      mathematics logical-deduction combinatorics






      share|improve this question









      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.










      share|improve this question









      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      share|improve this question




      share|improve this question








      edited 8 hours ago







      Matti













      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.








      asked 8 hours ago









      MattiMatti

      2247 bronze badges




      2247 bronze badges




      New contributor



      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      New contributor




      Matti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).







          share|improve this answer











          $endgroup$












          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago


















          3












          $begingroup$

          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.







          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          $endgroup$












          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            7 hours ago













          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "559"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );






          Matti is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f85379%2f5-cars-in-a-roundabout-traffic%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).







          share|improve this answer











          $endgroup$












          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago















          4












          $begingroup$

          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).







          share|improve this answer











          $endgroup$












          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago













          4












          4








          4





          $begingroup$

          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).







          share|improve this answer











          $endgroup$



          The question simply (simply? yes; see the end for comments on one issue that's been raised) asks




          how many permutations of five things there are with no fixed points; that is, nothing ending up in the same place as it began.




          There is a famous answer to this




          for an arbitrary number of things; with $n$, the answer is $n!left(frac10!-frac11!+frac12!-cdotspmfrac1n!right)$, which is approximately $n!/e$. For $n=5$ this becomes $120left(frac11-frac11+frac12-frac16+frac124-frac1120right)=120-120+60-20+5-1=44$.




          It can be proved




          using the so-called inclusion-exclusion principle. For $S$ any subset of the things being permuted, let $A_S$ be all the permutations for which everything in $S$ is a fixed point; then $|A_S|=(n-|S|)!$. We want to know how many things are in no $A_S$ other than $A_emptyset$. Begin by taking $A_emptyset$ itself; then remove all the $A_S$ with $|S|=1$; now we have removed the permutations with fixed points but gone too far by removing ones with two fixed points twice, so add back the $A_S$ with $|S|=2$; now, alas, any permutation with three fixed points has been removed three times and added three times, so take those out by removing all the $A_S$ with $|S|=3$; continuing in this way we get $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$. Term $k$ of this is $(-1)^k$ times the sum of $binomnk$ things each equal to $(n-k)!$. Adding the whole thing up we get exactly the series I described.




          If




          the reasoning leading to $|A_emptyset|-sum_=1|A_S|+sum_|A_S|-cdots$ seems a little handwavy, there is a more rigorous way to express it in terms of the binomial expansion of $(1-1)^n$, which you will readily find by putting "inclusion-exclusion principle" into your favourite search engine.




          Now, what about that restriction on passing?




          It doesn't make any difference. Pick any derangement. Imagine that all the cars enter the roundabout together, go around in the same direction, and leave when they reach their "target" exit. Nothing in this requires that their paths cross. If exiting the roundabout is quick enough, the car behind needn't even slow down :-).








          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 4 hours ago

























          answered 8 hours ago









          Gareth McCaughanGareth McCaughan

          74.9k3 gold badges189 silver badges289 bronze badges




          74.9k3 gold badges189 silver badges289 bronze badges











          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago
















          • $begingroup$
            You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
            $endgroup$
            – Gareth McCaughan
            8 hours ago










          • $begingroup$
            The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
            $endgroup$
            – Matti
            8 hours ago











          • $begingroup$
            Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
            $endgroup$
            – Gareth McCaughan
            4 hours ago















          $begingroup$
          You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
          $endgroup$
          – RShields
          8 hours ago




          $begingroup$
          You may have to show the formula actually works, since the cars each drive less than once around and presumably the roundabout has only one lane so cars cannot pass each other.
          $endgroup$
          – RShields
          8 hours ago












          $begingroup$
          If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
          $endgroup$
          – Gareth McCaughan
          8 hours ago




          $begingroup$
          If the cars are forbidden to pass one another then the answer will be different and smaller. @Matti, would you like to clarify?
          $endgroup$
          – Gareth McCaughan
          8 hours ago












          $begingroup$
          The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
          $endgroup$
          – RShields
          8 hours ago




          $begingroup$
          The answer may not be smaller. It seems like cars can exit at any time and can "pass" exited cars. Perhaps there's a way to show that cars can't block each other, therefore any rot13(qrenatrzrag) can occur.
          $endgroup$
          – RShields
          8 hours ago












          $begingroup$
          Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
          $endgroup$
          – Matti
          8 hours ago





          $begingroup$
          Sorry ! I forgot to mention it. The cars are forbidden to pass other cars in the roundabout traffic.
          $endgroup$
          – Matti
          8 hours ago













          $begingroup$
          Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
          $endgroup$
          – Gareth McCaughan
          4 hours ago




          $begingroup$
          Then I think you need to un-accept this answer, which doesn't take any account of that restriction.
          $endgroup$
          – Gareth McCaughan
          4 hours ago













          3












          $begingroup$

          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.







          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          $endgroup$












          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            7 hours ago















          3












          $begingroup$

          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.







          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          $endgroup$












          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            7 hours ago













          3












          3








          3





          $begingroup$

          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.







          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.





          $endgroup$



          The answer should be




          44, the number of derangements, or permutations with no fixed points, on five elements.




          because




          no car needs to pass any other if they all arrive at the same time; you can treat the cars' movements as discrete, moving one exit each step, and each car will indeed reach its destination in at most 4 steps without blocking any other cars.








          share|improve this answer










          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.








          share|improve this answer



          share|improve this answer








          edited 8 hours ago





















          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.








          answered 8 hours ago









          AxiomaticSystemAxiomaticSystem

          512 bronze badges




          512 bronze badges




          New contributor



          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.




          New contributor




          AxiomaticSystem is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.













          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            7 hours ago
















          • $begingroup$
            Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
            $endgroup$
            – RShields
            8 hours ago











          • $begingroup$
            So the cars aren't arriving at the same time?
            $endgroup$
            – AxiomaticSystem
            8 hours ago










          • $begingroup$
            They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
            $endgroup$
            – RShields
            8 hours ago










          • $begingroup$
            If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
            $endgroup$
            – Jaap Scherphuis
            7 hours ago















          $begingroup$
          Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
          $endgroup$
          – RShields
          8 hours ago





          $begingroup$
          Note that each car takes less than 1 circle and presumably they block each other off, so not every rot13(qrenatrzrag) is necessarily possible.
          $endgroup$
          – RShields
          8 hours ago













          $begingroup$
          So the cars aren't arriving at the same time?
          $endgroup$
          – AxiomaticSystem
          8 hours ago




          $begingroup$
          So the cars aren't arriving at the same time?
          $endgroup$
          – AxiomaticSystem
          8 hours ago












          $begingroup$
          They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
          $endgroup$
          – RShields
          8 hours ago




          $begingroup$
          They do arrive at the same time, probably don't exit at the same time, but you'll want to provide reasoning for why no car needs to pass another or make more than one round.
          $endgroup$
          – RShields
          8 hours ago












          $begingroup$
          If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
          $endgroup$
          – Jaap Scherphuis
          7 hours ago




          $begingroup$
          If they all go turn onto the roundabout together, and go around at the same speed, why would they need to overtake?
          $endgroup$
          – Jaap Scherphuis
          7 hours ago










          Matti is a new contributor. Be nice, and check out our Code of Conduct.









          draft saved

          draft discarded


















          Matti is a new contributor. Be nice, and check out our Code of Conduct.












          Matti is a new contributor. Be nice, and check out our Code of Conduct.











          Matti is a new contributor. Be nice, and check out our Code of Conduct.














          Thanks for contributing an answer to Puzzling Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fpuzzling.stackexchange.com%2fquestions%2f85379%2f5-cars-in-a-roundabout-traffic%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

          Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

          199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單