Tannaka duality for semisimple groups Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?What algebraic group does Tannaka-Krein reconstruct when fed the category of modules of a non-algebraic Lie algebra?Tannaka formalism and the étale fundamental groupIs there a ``path'' between any two fiber functors over the same field in Tannakian formalism?Counter example in Tannaka reconstruction?Recovering classical Tannaka duality from Lurie's version for geometric stacksTannaka DualityCan one explain Tannaka-Krein duality for a finite-group to … a computer ? (How to make input for reconstruction to be finite datum?)Tannakian Formalism for the Quaternions and Dihedral GroupTannakian theory for Lie algebrasIs it possible to reconstruct a finitely generated group from its category of representations?

Tannaka duality for semisimple groups



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?What algebraic group does Tannaka-Krein reconstruct when fed the category of modules of a non-algebraic Lie algebra?Tannaka formalism and the étale fundamental groupIs there a ``path'' between any two fiber functors over the same field in Tannakian formalism?Counter example in Tannaka reconstruction?Recovering classical Tannaka duality from Lurie's version for geometric stacksTannaka DualityCan one explain Tannaka-Krein duality for a finite-group to … a computer ? (How to make input for reconstruction to be finite datum?)Tannakian Formalism for the Quaternions and Dihedral GroupTannakian theory for Lie algebrasIs it possible to reconstruct a finitely generated group from its category of representations?










2












$begingroup$


Tannakian formalism tells us that for any rigid, symmetric monoidal, semisimple category $mathcalC$ equipped with a fiber functor $F: mathcalC to Vect_k$ for a field $k$ (of characteristic $0$) there exists a reductive algebraic group $G cong Aut(F)$ such that $mathcalC cong Rep(G)$. This means that any such category is associated with a root datum.



Is there a version of this reconstruction theorem that will tell us when a category $mathcalC$ is the category of finite dimensional representations of a semisimple group? I would like to be able to associate with a Tannakian category a root system, and not just a root datum.










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    Tannakian formalism tells us that for any rigid, symmetric monoidal, semisimple category $mathcalC$ equipped with a fiber functor $F: mathcalC to Vect_k$ for a field $k$ (of characteristic $0$) there exists a reductive algebraic group $G cong Aut(F)$ such that $mathcalC cong Rep(G)$. This means that any such category is associated with a root datum.



    Is there a version of this reconstruction theorem that will tell us when a category $mathcalC$ is the category of finite dimensional representations of a semisimple group? I would like to be able to associate with a Tannakian category a root system, and not just a root datum.










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      Tannakian formalism tells us that for any rigid, symmetric monoidal, semisimple category $mathcalC$ equipped with a fiber functor $F: mathcalC to Vect_k$ for a field $k$ (of characteristic $0$) there exists a reductive algebraic group $G cong Aut(F)$ such that $mathcalC cong Rep(G)$. This means that any such category is associated with a root datum.



      Is there a version of this reconstruction theorem that will tell us when a category $mathcalC$ is the category of finite dimensional representations of a semisimple group? I would like to be able to associate with a Tannakian category a root system, and not just a root datum.










      share|cite|improve this question









      $endgroup$




      Tannakian formalism tells us that for any rigid, symmetric monoidal, semisimple category $mathcalC$ equipped with a fiber functor $F: mathcalC to Vect_k$ for a field $k$ (of characteristic $0$) there exists a reductive algebraic group $G cong Aut(F)$ such that $mathcalC cong Rep(G)$. This means that any such category is associated with a root datum.



      Is there a version of this reconstruction theorem that will tell us when a category $mathcalC$ is the category of finite dimensional representations of a semisimple group? I would like to be able to associate with a Tannakian category a root system, and not just a root datum.







      ag.algebraic-geometry rt.representation-theory ct.category-theory tannakian-category






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      leibnewtzleibnewtz

      55428




      55428




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
            $endgroup$
            – leibnewtz
            1 hour ago










          • $begingroup$
            I think so. But I’m more into topological groups...
            $endgroup$
            – M Mueger
            1 hour ago










          • $begingroup$
            Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
            $endgroup$
            – Will Sawin
            57 mins ago


















          1












          $begingroup$

          Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Could you say something about what bounded dimension means?
            $endgroup$
            – leibnewtz
            13 mins ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "504"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328495%2ftannaka-duality-for-semisimple-groups%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
            $endgroup$
            – leibnewtz
            1 hour ago










          • $begingroup$
            I think so. But I’m more into topological groups...
            $endgroup$
            – M Mueger
            1 hour ago










          • $begingroup$
            Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
            $endgroup$
            – Will Sawin
            57 mins ago















          2












          $begingroup$

          In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
            $endgroup$
            – leibnewtz
            1 hour ago










          • $begingroup$
            I think so. But I’m more into topological groups...
            $endgroup$
            – M Mueger
            1 hour ago










          • $begingroup$
            Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
            $endgroup$
            – Will Sawin
            57 mins ago













          2












          2








          2





          $begingroup$

          In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.






          share|cite|improve this answer









          $endgroup$



          In order for $mathcal C$ to come from an algebraic group rather than a pro-algebraic one, you want $mathcal C$ to be finitely generated. And for semisimplicity, you want the group to have finite center. The center can be read off from the category. Cf. my paper “On the center of a compact group”, Intern. Math. Res. Notes. 2004:51, 2751-2756 (2004) or math.CT/0312257.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          M MuegerM Mueger

          1635




          1635











          • $begingroup$
            Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
            $endgroup$
            – leibnewtz
            1 hour ago










          • $begingroup$
            I think so. But I’m more into topological groups...
            $endgroup$
            – M Mueger
            1 hour ago










          • $begingroup$
            Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
            $endgroup$
            – Will Sawin
            57 mins ago
















          • $begingroup$
            Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
            $endgroup$
            – leibnewtz
            1 hour ago










          • $begingroup$
            I think so. But I’m more into topological groups...
            $endgroup$
            – M Mueger
            1 hour ago










          • $begingroup$
            Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
            $endgroup$
            – Will Sawin
            57 mins ago















          $begingroup$
          Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
          $endgroup$
          – leibnewtz
          1 hour ago




          $begingroup$
          Ah this is excellent! So that claim is that a semisimple, finitely generated, rigid, symmetric monoidal abelian category with a fiber functor is the category of representations of a semisimple algebraic group if and only if the chain group of the category is finite. Is this correct?
          $endgroup$
          – leibnewtz
          1 hour ago












          $begingroup$
          I think so. But I’m more into topological groups...
          $endgroup$
          – M Mueger
          1 hour ago




          $begingroup$
          I think so. But I’m more into topological groups...
          $endgroup$
          – M Mueger
          1 hour ago












          $begingroup$
          Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
          $endgroup$
          – Will Sawin
          57 mins ago




          $begingroup$
          Nothing here forces the group to be connected, and this finite center criterion holds only for connected groups (try $O(2)$).
          $endgroup$
          – Will Sawin
          57 mins ago











          1












          $begingroup$

          Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Could you say something about what bounded dimension means?
            $endgroup$
            – leibnewtz
            13 mins ago















          1












          $begingroup$

          Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Could you say something about what bounded dimension means?
            $endgroup$
            – leibnewtz
            13 mins ago













          1












          1








          1





          $begingroup$

          Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.






          share|cite|improve this answer









          $endgroup$



          Another criterion is that there should be only finitely many objects of bounded dimension. This condition might be easy to check in practice from abstract finiteness theorems. The proof is that, if the group is not semi simple, you can take any 1-dimensional character of the identity component and induce up to the main group. Because there are infinitely many characters, infinitely many representations.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 58 mins ago









          Will SawinWill Sawin

          68.7k7140285




          68.7k7140285











          • $begingroup$
            Could you say something about what bounded dimension means?
            $endgroup$
            – leibnewtz
            13 mins ago
















          • $begingroup$
            Could you say something about what bounded dimension means?
            $endgroup$
            – leibnewtz
            13 mins ago















          $begingroup$
          Could you say something about what bounded dimension means?
          $endgroup$
          – leibnewtz
          13 mins ago




          $begingroup$
          Could you say something about what bounded dimension means?
          $endgroup$
          – leibnewtz
          13 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to MathOverflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328495%2ftannaka-duality-for-semisimple-groups%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

          Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

          199年 目錄 大件事 到箇年出世嗰人 到箇年死嗰人 節慶、風俗習慣 導覽選單