Computing a trigonometric integralHelp computing integral of quarter contourA trigonometric integral identityComputing an integral arising in potential theoryDefinite integral which does not evaluateEvaluate $int_0^piln(cos(x)+1)cos(nx),dx$solving exponential of trigonometric function inside an integral.How to convert this integral to an elliptic integral?Why does this integral not depend on the parameter?Difficult trigonometric integral. [Solved]Solving the Integral without Cauchy Integral formula.

Hand soldering SMD 1206 components

What's currently blocking the construction of the wall between Mexico and the US?

Where can I find a database of galactic spectra?

What reason would an alien civilization have for building a Dyson Sphere (or Swarm) if cheap Nuclear fusion is available?

Fill NAs in R with zero if the next valid data point is more than 2 intervals away

How risky is real estate?

Does squid ink pasta bleed?

Is there a maximum distance from a planet that a moon can orbit?

How does a blind passenger not die, if driver becomes unconscious

Vanishing of certain coefficients coming from Coxeter groups

Require advice on power conservation for backpacking trip

Find the probability that the 8th woman to appear is in 17th position.

Folding basket - is there such a thing?

Should I prioritize my 401(k) over my student loans?

Impossible darts scores

Can any NP-Complete Problem be solved using at most polynomial space (but while using exponential time?)

Is there a way to split the metadata to custom folders?

Employer wants to use my work email account after I quit

Did Karl Marx ever use any example that involved cotton and dollars to illustrate the way capital and surplus value were generated?

Set multicolumn to a exact width

Underbar nabla symbol doesn't work

Has there been any indication at all that further negotiation between the UK and EU is possible?

Going to get married soon, should I do it on Dec 31 or Jan 1?

Should my manager be aware of private LinkedIn approaches I receive? How to politely have this happen?



Computing a trigonometric integral


Help computing integral of quarter contourA trigonometric integral identityComputing an integral arising in potential theoryDefinite integral which does not evaluateEvaluate $int_0^piln(cos(x)+1)cos(nx),dx$solving exponential of trigonometric function inside an integral.How to convert this integral to an elliptic integral?Why does this integral not depend on the parameter?Difficult trigonometric integral. [Solved]Solving the Integral without Cauchy Integral formula.






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








4












$begingroup$


I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    9 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    8 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    8 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    6 hours ago

















4












$begingroup$


I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.










share|cite|improve this question











$endgroup$











  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    9 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    8 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    8 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    6 hours ago













4












4








4





$begingroup$


I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.










share|cite|improve this question











$endgroup$




I am studying the integral
$$I=int_-pi/2^pi/2
frac28cos^2(theta)+10cos(theta)sin(theta)-28sin^2(theta)2cos^4(theta)+3cos^2(theta)sin^2(theta)+msin^4(theta)dtheta,$$

where $m>0$. In the problem I am working, it is very important to know what value of $m$ makes this integral positive, negative or equal to zero. I found that if $m=2$, then the integral is zero (introducing it in Wolfram Alpha). However, I don't know how to prove it formally.



On the other hand, I tried some values of $m$ in Wolfram and it seems that if $m<2$, then the integral is negative, and if $m>2$, the integral is positive. But again, I have no proof of this.



Any ideas of how to approach this problem?



Just in case, I found this alternative representation of the integral
$$I=int_-pi/2^pi/2
frac8[5sin(2theta)+28cos(2theta)]cos(4theta)+15+8(m-2)sin^4(theta)dtheta.$$



Any help would be appreciated.







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 8 hours ago







user326159

















asked 9 hours ago









user326159user326159

1,4821 gold badge9 silver badges22 bronze badges




1,4821 gold badge9 silver badges22 bronze badges











  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    9 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    8 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    8 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    6 hours ago
















  • $begingroup$
    This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
    $endgroup$
    – Yuriy S
    9 hours ago










  • $begingroup$
    Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
    $endgroup$
    – user10354138
    8 hours ago










  • $begingroup$
    Yes. I've corrected it
    $endgroup$
    – user326159
    8 hours ago






  • 1




    $begingroup$
    Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
    $endgroup$
    – Sangchul Lee
    6 hours ago















$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
9 hours ago




$begingroup$
This looks like a messy integral. Do you really need a formal proof? Why not just plot or table the integral numerically (in Mathematica, Matlab etc) for some range of $m$ and see if your guess is right
$endgroup$
– Yuriy S
9 hours ago












$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
8 hours ago




$begingroup$
Surely it is $8(m-2)sin^4theta$ not $(m-2)sin^4theta$ in the denominator of the last equation?
$endgroup$
– user10354138
8 hours ago












$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
8 hours ago




$begingroup$
Yes. I've corrected it
$endgroup$
– user326159
8 hours ago




1




1




$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
6 hours ago




$begingroup$
Writing $alpha^2 = m/2$, we get $$ I(alpha) = 14 pi left( 1-frac1alpharight)sqrtfrac24alpha+3. $$ From this, we easily deduce the sign of $I$ as function of $alpha$, i.e., $operatornamesign(I(alpha)) = operatornamesign(alpha - 1)$. Now if you ask me how I arrived this expression, it is basically from an ugly residue computation applied to $$I(alpha) = int_-infty^infty frac28(1-t^2)2+3t^2+2alpha^2 t^4, mathrmdt, $$ but I have not enough energy to write up all the intermediate steps...
$endgroup$
– Sangchul Lee
6 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

This problem is "nice" in the sense that the integrand is really trig function of $2theta$
$$
I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
$$

So
$$
I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
$$

which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



So
$$
I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
$$

which simplifies to
$$
I=frac12iint_mathbbT
frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
$$

The poles are at, if $mneq 1$,
$$
z+z^-1=frac2(m-2pmsqrtm)m-1.
$$

so, since $m>0$
$$labeleq:poles
z=
begincases
0,frac12(3pmsqrt5)& m=1\
frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
endcasestag$star$
$$

So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
$$
I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Can you give more details of this method?
    $endgroup$
    – user326159
    8 hours ago


















3












$begingroup$


Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



$$beginalign
mathcalIleft(muright)
&:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$




Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



$$beginalign
mathcalIleft(muright)
&=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
&~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
endalign$$




Using the double-angle formulas for sine and cosine,



$$beginalign
sinleft(2thetaright)
&=2sinleft(thetaright)cosleft(thetaright),\
cosleft(2thetaright)
&=cos^2left(thetaright)-sin^2left(thetaright)\
&=2cos^2left(thetaright)-1\
&=1-2sin^2left(thetaright),\
endalign$$



we can rewrite the integral as



$$beginalign
mathcalIleft(muright)
&=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
&=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
&=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
endalign$$



Using the tangent half-angle substitution, the trigonometric integral transforms as



$$beginalign
mathcalIleft(muright)
&=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
&=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
endalign$$



Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



$$beginalign
mathcalIleft(muright)
&=mathcalIleft(frac2a^2right)\
&=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
&=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
&=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
&~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
&=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
&=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
&=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
endalign$$



Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



$$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



as you originally conjectured.








share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    note that since the function part of the function is odd i.e:
    $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
    $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
    you could notice that the integral can be simplified to:
    $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
    $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
    $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
    $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




    One route you could try to take is Tangent half-angle substitution, which yields:
    $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
    the bottom of this fraction can be expanded to:
    $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
    this may be factorisable for certain values of $m$






    share|cite|improve this answer











    $endgroup$















      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3












      $begingroup$

      This problem is "nice" in the sense that the integrand is really trig function of $2theta$
      $$
      I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
      $$

      So
      $$
      I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
      $$

      which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



      So
      $$
      I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
      $$

      which simplifies to
      $$
      I=frac12iint_mathbbT
      frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
      $$

      The poles are at, if $mneq 1$,
      $$
      z+z^-1=frac2(m-2pmsqrtm)m-1.
      $$

      so, since $m>0$
      $$labeleq:poles
      z=
      begincases
      0,frac12(3pmsqrt5)& m=1\
      frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
      endcasestag$star$
      $$

      So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
      $$
      I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
      $$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Can you give more details of this method?
        $endgroup$
        – user326159
        8 hours ago















      3












      $begingroup$

      This problem is "nice" in the sense that the integrand is really trig function of $2theta$
      $$
      I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
      $$

      So
      $$
      I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
      $$

      which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



      So
      $$
      I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
      $$

      which simplifies to
      $$
      I=frac12iint_mathbbT
      frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
      $$

      The poles are at, if $mneq 1$,
      $$
      z+z^-1=frac2(m-2pmsqrtm)m-1.
      $$

      so, since $m>0$
      $$labeleq:poles
      z=
      begincases
      0,frac12(3pmsqrt5)& m=1\
      frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
      endcasestag$star$
      $$

      So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
      $$
      I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
      $$






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Can you give more details of this method?
        $endgroup$
        – user326159
        8 hours ago













      3












      3








      3





      $begingroup$

      This problem is "nice" in the sense that the integrand is really trig function of $2theta$
      $$
      I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
      $$

      So
      $$
      I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
      $$

      which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



      So
      $$
      I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
      $$

      which simplifies to
      $$
      I=frac12iint_mathbbT
      frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
      $$

      The poles are at, if $mneq 1$,
      $$
      z+z^-1=frac2(m-2pmsqrtm)m-1.
      $$

      so, since $m>0$
      $$labeleq:poles
      z=
      begincases
      0,frac12(3pmsqrt5)& m=1\
      frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
      endcasestag$star$
      $$

      So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
      $$
      I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
      $$






      share|cite|improve this answer











      $endgroup$



      This problem is "nice" in the sense that the integrand is really trig function of $2theta$
      $$
      I=int_-pi/2^pi/2frac28cos 2theta+5sin2thetafrac12(1+cos2theta)^2+frac34sin^2 2theta+fracm4(cos2theta-1)^2,mathrmdtheta
      $$

      So
      $$
      I=frac12int_-pi^pifrac28cosphi+5sinphifrac12(1+cosphi)^2+frac34sin^2 phi+fracm4(cosphi-1)^2,mathrmdphi
      $$

      which we can rewrite as a contour integral of a rational function over the unit circle $z=e^iphi$, $-pileqphileqpi$ in $mathbbC$, hence it is just a matter of computing residues.



      So
      $$
      I=frac12int_mathbbTfrac28cdotfrac12(z+z^-1)+5cdotfrac12i(z-z^-1)frac12(1+frac12(z+z^-1))^2+frac34(-frac14(z-z^-1)^2)+fracm4(frac12(z+z^-1)-1)^2,fracmathrmdziz
      $$

      which simplifies to
      $$
      I=frac12iint_mathbbT
      frac8 ((28 + 5 i) + (28 - 5 i) z^2),mathrmdz(m-1)(z^4+1)-4(m-2)(z^3+z)+6(m-3)z^2
      $$

      The poles are at, if $mneq 1$,
      $$
      z+z^-1=frac2(m-2pmsqrtm)m-1.
      $$

      so, since $m>0$
      $$labeleq:poles
      z=
      begincases
      0,frac12(3pmsqrt5)& m=1\
      frac2pmsqrtmpmsqrt3pm 2sqrtm1pmsqrtm&mneq 1.
      endcasestag$star$
      $$

      So all poles are at worst simple unless $m=frac49$ (in which case we get a double pole at $z=4$ which we can ignore), and
      $$
      I=pisum_substacklvert z_irvert<1\z_iineqrefeq:polesoperatornameres_z_i(dots)+(textcorrection if lvert z_irvert=1).
      $$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited 8 hours ago

























      answered 8 hours ago









      user10354138user10354138

      17.3k2 gold badges12 silver badges32 bronze badges




      17.3k2 gold badges12 silver badges32 bronze badges











      • $begingroup$
        Can you give more details of this method?
        $endgroup$
        – user326159
        8 hours ago
















      • $begingroup$
        Can you give more details of this method?
        $endgroup$
        – user326159
        8 hours ago















      $begingroup$
      Can you give more details of this method?
      $endgroup$
      – user326159
      8 hours ago




      $begingroup$
      Can you give more details of this method?
      $endgroup$
      – user326159
      8 hours ago













      3












      $begingroup$


      Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



      $$beginalign
      mathcalIleft(muright)
      &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
      endalign$$




      Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



      $$beginalign
      mathcalIleft(muright)
      &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
      &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
      &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
      &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
      &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
      &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
      &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
      endalign$$




      Using the double-angle formulas for sine and cosine,



      $$beginalign
      sinleft(2thetaright)
      &=2sinleft(thetaright)cosleft(thetaright),\
      cosleft(2thetaright)
      &=cos^2left(thetaright)-sin^2left(thetaright)\
      &=2cos^2left(thetaright)-1\
      &=1-2sin^2left(thetaright),\
      endalign$$



      we can rewrite the integral as



      $$beginalign
      mathcalIleft(muright)
      &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
      &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
      &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
      &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
      &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
      &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
      endalign$$



      Using the tangent half-angle substitution, the trigonometric integral transforms as



      $$beginalign
      mathcalIleft(muright)
      &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
      &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
      &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
      endalign$$



      Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



      $$beginalign
      mathcalIleft(muright)
      &=mathcalIleft(frac2a^2right)\
      &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
      &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
      &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
      &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
      &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
      &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
      &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
      &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
      &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
      &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
      &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
      &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
      &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
      endalign$$



      Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



      $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



      as you originally conjectured.








      share|cite|improve this answer









      $endgroup$

















        3












        $begingroup$


        Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



        $$beginalign
        mathcalIleft(muright)
        &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
        endalign$$




        Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



        $$beginalign
        mathcalIleft(muright)
        &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
        &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
        &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
        &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
        &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
        &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
        &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
        endalign$$




        Using the double-angle formulas for sine and cosine,



        $$beginalign
        sinleft(2thetaright)
        &=2sinleft(thetaright)cosleft(thetaright),\
        cosleft(2thetaright)
        &=cos^2left(thetaright)-sin^2left(thetaright)\
        &=2cos^2left(thetaright)-1\
        &=1-2sin^2left(thetaright),\
        endalign$$



        we can rewrite the integral as



        $$beginalign
        mathcalIleft(muright)
        &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
        &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
        &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
        &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
        &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
        &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
        endalign$$



        Using the tangent half-angle substitution, the trigonometric integral transforms as



        $$beginalign
        mathcalIleft(muright)
        &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
        &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
        &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
        endalign$$



        Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



        $$beginalign
        mathcalIleft(muright)
        &=mathcalIleft(frac2a^2right)\
        &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
        &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
        &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
        &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
        &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
        &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
        &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
        &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
        &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
        &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
        &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
        &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
        &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
        endalign$$



        Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



        $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



        as you originally conjectured.








        share|cite|improve this answer









        $endgroup$















          3












          3








          3





          $begingroup$


          Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



          $$beginalign
          mathcalIleft(muright)
          &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
          endalign$$




          Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



          $$beginalign
          mathcalIleft(muright)
          &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
          &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
          endalign$$




          Using the double-angle formulas for sine and cosine,



          $$beginalign
          sinleft(2thetaright)
          &=2sinleft(thetaright)cosleft(thetaright),\
          cosleft(2thetaright)
          &=cos^2left(thetaright)-sin^2left(thetaright)\
          &=2cos^2left(thetaright)-1\
          &=1-2sin^2left(thetaright),\
          endalign$$



          we can rewrite the integral as



          $$beginalign
          mathcalIleft(muright)
          &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
          &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
          &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
          &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
          endalign$$



          Using the tangent half-angle substitution, the trigonometric integral transforms as



          $$beginalign
          mathcalIleft(muright)
          &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
          &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
          &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
          endalign$$



          Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



          $$beginalign
          mathcalIleft(muright)
          &=mathcalIleft(frac2a^2right)\
          &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
          &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
          &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
          &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
          &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
          &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
          &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
          &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
          &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
          &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
          &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
          &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
          &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
          endalign$$



          Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



          $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



          as you originally conjectured.








          share|cite|improve this answer









          $endgroup$




          Define the function $mathcalI:mathbbR_>0rightarrowmathbbR$ via the trigonometric integral



          $$beginalign
          mathcalIleft(muright)
          &:=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
          endalign$$




          Let $muinmathbbR_>0$. Since the integral $mathcalI$ has a symmetric interval of integration, the integral of the odd component of the integrand vanishes identically:



          $$beginalign
          mathcalIleft(muright)
          &=int_-fracpi2^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=int_-fracpi2^0mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)-10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright);~~~smallleft[thetamapsto-thetaright]\
          &~~~~~+int_0^fracpi2mathrmdtheta,frac28cos^2left(thetaright)+10cosleft(thetaright)sinleft(thetaright)-28sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=int_0^fracpi2mathrmdtheta,frac56cos^2left(thetaright)-56sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright).\
          endalign$$




          Using the double-angle formulas for sine and cosine,



          $$beginalign
          sinleft(2thetaright)
          &=2sinleft(thetaright)cosleft(thetaright),\
          cosleft(2thetaright)
          &=cos^2left(thetaright)-sin^2left(thetaright)\
          &=2cos^2left(thetaright)-1\
          &=1-2sin^2left(thetaright),\
          endalign$$



          we can rewrite the integral as



          $$beginalign
          mathcalIleft(muright)
          &=56int_0^fracpi2mathrmdtheta,fraccos^2left(thetaright)-sin^2left(thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=56int_0^fracpi2mathrmdtheta,fraccosleft(2thetaright)2cos^4left(thetaright)+3cos^2left(thetaright)sin^2left(thetaright)+musin^4left(thetaright)\
          &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)8cos^4left(thetaright)+12cos^2left(thetaright)sin^2left(thetaright)+4musin^4left(thetaright)\
          &=56int_0^fracpi2mathrmdtheta,frac4cosleft(2thetaright)2left[1+cosleft(2thetaright)right]^2+3sin^2left(2thetaright)+muleft[1-cosleft(2thetaright)right]^2\
          &=56int_0^pimathrmdtheta,frac2cosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2;~~~smallleft[thetamapstofrac12thetaright]\
          &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2.\
          endalign$$



          Using the tangent half-angle substitution, the trigonometric integral transforms as



          $$beginalign
          mathcalIleft(muright)
          &=112int_0^pimathrmdtheta,fraccosleft(thetaright)2left[1+cosleft(thetaright)right]^2+3sin^2left(thetaright)+muleft[1-cosleft(thetaright)right]^2\
          &=112int_0^inftymathrmdt,frac21+t^2cdotfracleft(frac1-t^21+t^2right)2left(1+frac1-t^21+t^2right)^2+3left(frac2t1+t^2right)^2+muleft(1-frac1-t^21+t^2right)^2;~~~smallleft[theta=2arctanleft(tright)right]\
          &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+mu,t^4.\
          endalign$$



          Setting $sqrtfrac2mu=:ainmathbbR_>0$ and $frac34a=:binmathbbR_>0$, we then have



          $$beginalign
          mathcalIleft(muright)
          &=mathcalIleft(frac2a^2right)\
          &=int_0^inftymathrmdt,frac56left(1-t^2right)2+3t^2+2a^-2t^4\
          &=sqrtaint_0^inftymathrmdu,frac56left(1-au^2right)2+3au^2+2u^4;~~~smallleft[t=usqrtaright]\
          &=frac13sqrtaint_0^inftymathrmdu,frac28left(3-4bu^2right)1+2bu^2+u^4\
          &=frac283sqrt[4]frac2muint_0^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
          &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
          &~~~~~+frac283sqrt[4]frac2muint_1^inftymathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
          &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bu^2right)1+2bu^2+u^4\
          &~~~~~+frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3u^2-4bright)1+2bu^2+u^4;~~~smallleft[umapstofrac1uright]\
          &=frac283sqrt[4]frac2muint_0^1mathrmdu,fracleft(3-4bright)left(1+u^2right)1+2bu^2+u^4\
          &=28left(1-frac43bright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
          &=28left(1-aright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
          &=28left(1-sqrtfrac2muright)sqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4\
          &=frac28left(mu-2right)left(sqrtmu+sqrt2right)sqrtmusqrt[4]frac2muint_0^1mathrmdu,frac1+u^21+2bu^2+u^4.\
          endalign$$



          Since the integral factor in the last line above is a positive quantity, we don't need to actually solve the integral to determine the sign of $mathcalI$. We have



          $$operatornamesgnleft(mathcalIleft(muright)right)=operatornamesgnleft(mu-2right),$$



          as you originally conjectured.









          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 4 hours ago









          David HDavid H

          22.2k2 gold badges49 silver badges96 bronze badges




          22.2k2 gold badges49 silver badges96 bronze badges





















              2












              $begingroup$

              note that since the function part of the function is odd i.e:
              $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
              $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
              you could notice that the integral can be simplified to:
              $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
              $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
              $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
              $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




              One route you could try to take is Tangent half-angle substitution, which yields:
              $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
              the bottom of this fraction can be expanded to:
              $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
              this may be factorisable for certain values of $m$






              share|cite|improve this answer











              $endgroup$

















                2












                $begingroup$

                note that since the function part of the function is odd i.e:
                $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
                $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
                you could notice that the integral can be simplified to:
                $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
                $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
                $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
                $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




                One route you could try to take is Tangent half-angle substitution, which yields:
                $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
                the bottom of this fraction can be expanded to:
                $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
                this may be factorisable for certain values of $m$






                share|cite|improve this answer











                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  note that since the function part of the function is odd i.e:
                  $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
                  $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
                  you could notice that the integral can be simplified to:
                  $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
                  $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
                  $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
                  $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




                  One route you could try to take is Tangent half-angle substitution, which yields:
                  $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
                  the bottom of this fraction can be expanded to:
                  $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
                  this may be factorisable for certain values of $m$






                  share|cite|improve this answer











                  $endgroup$



                  note that since the function part of the function is odd i.e:
                  $$f(x)=frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
                  $$f(-x)=frac28cos^2x-10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4x$$
                  you could notice that the integral can be simplified to:
                  $$int_-pi/2^pi/2frac28cos^2x+10cos xsin x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
                  $$=int_-pi/2^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
                  $$=2int_0^pi/2frac28cos^2x-28sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$
                  $$=56int_0^pi/2fraccos^2x-sin^2x2cos^4x+3cos^2xsin^2x+msin^4xdx$$




                  One route you could try to take is Tangent half-angle substitution, which yields:
                  $$112int_0^1(1+t^2)frac(1-t^2)^2-(2t)^22(1-t^2)^4+3(1-t^2)^2(2t)^2+m(2t)^4dt$$
                  the bottom of this fraction can be expanded to:
                  $$2t^8+4t^6+16t^4m-12t^4+4t^2+2$$
                  this may be factorisable for certain values of $m$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 8 hours ago

























                  answered 8 hours ago









                  Henry LeeHenry Lee

                  2,6891 gold badge4 silver badges19 bronze badges




                  2,6891 gold badge4 silver badges19 bronze badges



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3268999%2fcomputing-a-trigonometric-integral%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                      Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                      Ласкавець круглолистий Зміст Опис | Поширення | Галерея | Примітки | Посилання | Навігаційне меню58171138361-22960890446Bupleurum rotundifoliumEuro+Med PlantbasePlants of the World Online — Kew ScienceGermplasm Resources Information Network (GRIN)Ласкавецькн. VI : Літери Ком — Левиправивши або дописавши її