Why doesn't ever smooth vector bundle admits a line bundle?Tautological vector bundle over $G_1(mathbbR^2)$ isomorphic to the Möbius bundleAlternate definition of vector bundle?Dual of a holomorphic vector bundleSmooth sections of smooth vector bundleIs the unit bundle of a Finsler vector bundle a sphere bundle?Redundancy in the definition of vector bundles?Why are $E/F$ and $E^ast$ smooth manifolds?Restriction of a smooth vector bundle is a smooth bundle?Show that the Mobius bundle is a smooth real line bundle and it is non-trivial.Why is this wrong? Orientation-reversing vector bundle isomorphism on even-rank vector bundles
Is an HNN extension of a virtually torsion-free group virtually torsion-free?
Is “snitty” a popular American English term? What is its origin?
Install LibreOffice-Writer Only not LibreOffice whole package
Can I use a Cat5e cable with an RJ45 and Cat6 port?
Would you use "llamarse" for an animal's name?
Can there be a single technologically advanced nation, in a continent full of non-technologically advanced nations?
Why does sound not move through a wall?
Start job from another SQL server instance
Is there a word for food that's gone 'bad', but is still edible?
Checking if two expressions are related
Can you use "едать" and "игрывать" in the present and future tenses?
Voltage Balun 1:1
How should I tell my manager I'm not paying for an optional after work event I'm not going to?
How do I, as a DM, handle a party that decides to set up an ambush in a dungeon?
What was the first story to feature the plot "the monsters were human all along"?
How can I get people to remember my character's gender?
Are pressure-treated posts that have been submerged for a few days ruined?
History of the kernel of a homomorphism?
Are there terms in German for different skull shapes?
Hostile Divisor Numbers
Has the United States ever had a non-Christian President?
What is a common way to tell if an academic is "above average," or outstanding in their field? Is their h-index (Hirsh index) one of them?
What are the advantages of luxury car brands like Acura/Lexus over their sibling non-luxury brands Honda/Toyota?
Should I simplify my writing in a foreign country?
Why doesn't ever smooth vector bundle admits a line bundle?
Tautological vector bundle over $G_1(mathbbR^2)$ isomorphic to the Möbius bundleAlternate definition of vector bundle?Dual of a holomorphic vector bundleSmooth sections of smooth vector bundleIs the unit bundle of a Finsler vector bundle a sphere bundle?Redundancy in the definition of vector bundles?Why are $E/F$ and $E^ast$ smooth manifolds?Restriction of a smooth vector bundle is a smooth bundle?Show that the Mobius bundle is a smooth real line bundle and it is non-trivial.Why is this wrong? Orientation-reversing vector bundle isomorphism on even-rank vector bundles
$begingroup$
Let $E to M$ be a smooth vector bundle. Consider $G = sqcup_p in M F_p$ where $F_p$ is just a 1 dimensional subspace of each fiber $E_p$. The trivialization is just coming from the restriction of the trivialization of $E$. Why is this argument wrong?
differential-geometry differential-topology smooth-manifolds vector-bundles
$endgroup$
add a comment |
$begingroup$
Let $E to M$ be a smooth vector bundle. Consider $G = sqcup_p in M F_p$ where $F_p$ is just a 1 dimensional subspace of each fiber $E_p$. The trivialization is just coming from the restriction of the trivialization of $E$. Why is this argument wrong?
differential-geometry differential-topology smooth-manifolds vector-bundles
$endgroup$
1
$begingroup$
How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
$endgroup$
– Jane Doé
2 hours ago
$begingroup$
Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
$endgroup$
– Eric Wofsey
2 hours ago
add a comment |
$begingroup$
Let $E to M$ be a smooth vector bundle. Consider $G = sqcup_p in M F_p$ where $F_p$ is just a 1 dimensional subspace of each fiber $E_p$. The trivialization is just coming from the restriction of the trivialization of $E$. Why is this argument wrong?
differential-geometry differential-topology smooth-manifolds vector-bundles
$endgroup$
Let $E to M$ be a smooth vector bundle. Consider $G = sqcup_p in M F_p$ where $F_p$ is just a 1 dimensional subspace of each fiber $E_p$. The trivialization is just coming from the restriction of the trivialization of $E$. Why is this argument wrong?
differential-geometry differential-topology smooth-manifolds vector-bundles
differential-geometry differential-topology smooth-manifolds vector-bundles
asked 2 hours ago
kochkoch
22518
22518
1
$begingroup$
How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
$endgroup$
– Jane Doé
2 hours ago
$begingroup$
Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
$endgroup$
– Eric Wofsey
2 hours ago
add a comment |
1
$begingroup$
How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
$endgroup$
– Jane Doé
2 hours ago
$begingroup$
Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
$endgroup$
– Eric Wofsey
2 hours ago
1
1
$begingroup$
How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
$endgroup$
– Jane Doé
2 hours ago
$begingroup$
How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
$endgroup$
– Jane Doé
2 hours ago
$begingroup$
Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
$endgroup$
– Eric Wofsey
2 hours ago
$begingroup$
Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
$endgroup$
– Eric Wofsey
2 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.
You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.
Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.
$endgroup$
add a comment |
$begingroup$
Some comments:
The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.
The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.
There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.
By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.
It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.
We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$
Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.
In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3212960%2fwhy-doesnt-ever-smooth-vector-bundle-admits-a-line-bundle%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.
You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.
Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.
$endgroup$
add a comment |
$begingroup$
Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.
You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.
Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.
$endgroup$
add a comment |
$begingroup$
Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.
You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.
Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.
$endgroup$
Well, here's a simple example. Let $M=mathbbR$ and let $E$ be the trivial bundle $MtimesmathbbR^2$. You say to pick a 1-dimensional subspace $F_p$ of each fiber, so let's do so as follows. If $p=0$, then $F_p=ptimes 0timesmathbbR$. If $pneq0$, then $F_p=ptimesmathbbRtimes0$.
You now say we can (locally) trivialize $G$ by just restricting a (local) trivialization of $E$. Well, in this case $E$ is globally trivial, so you'd be saying that $G$ is already trivial. But if we try to "restrict" our trivialization of $E$, we immediately hit a problem: there is no single subspace $VsubsetmathbbR^2$ such that $F_p=ptimes V$ for all $p$, so there is no obvious way to restrict our trivialization. We could try to define a trivialization $MtimesmathbbRto G$ that would be an isomorphism on each fiber, but such a map would not be continuous, since the fiber of $G$ "jumps" discontinuously at $0$. Indeed, $G$ is not a line bundle over $M$ at all.
Now you might say I just made a dumb choice of 1-dimensional subspaces $F_p$. It would have been a lot smarter to pick $F_p=ptimesmathbbRtimes0$ for all $p$, instead of doing something crazy at $p=0$. Indeed, in that case $G$ would be a trivial line bundle and the obvious map $MtimesmathbbRto G$ would be an isomorphism of line bundles. But, what if our original bundle $E$ was not trivial? Then we could make a "smart" choice like this for $F_p$ in each local trivialization of $E$, but our choices of $F_p$ in different local trivialization that overlap might not be the same. There's no reason to believe we can choose $F_p$ consistently for all $p$ such that $G$ really is locally trivial everywhere.
edited 2 hours ago
answered 2 hours ago
Eric WofseyEric Wofsey
195k14224355
195k14224355
add a comment |
add a comment |
$begingroup$
Some comments:
The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.
The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.
There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.
By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.
It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.
We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$
Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.
In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.
$endgroup$
add a comment |
$begingroup$
Some comments:
The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.
The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.
There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.
By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.
It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.
We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$
Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.
In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.
$endgroup$
add a comment |
$begingroup$
Some comments:
The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.
The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.
There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.
By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.
It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.
We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$
Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.
In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.
$endgroup$
Some comments:
The family of 1-dimensional subspaces $p mapsto F_p$ does indeed exist, by the axiom of choice.
The set $sqcup_p in M F_p$ does indeed exist, by basic principles of set theory.
There's a natural set-theoretic inclusion of $bigsqcup_p in M F_p$ into the total space $E$.
By composing the distinguished map $E rightarrow M$ with the aforementioned inclusion, we get a surjective function from $sqcup_p in M F_p$ down onto the base space $M$.
It remains to show that the map in $(3)$ is smooth. If we can show this, then the map in $(4)$ is smooth, and we're done.
We can't show that the map in $(3)$ is smooth until we've chosen a manifold structure on $sqcup_p in M F_p.$
Since the $F_p$ are arbitrary, getting an actual manifold structure on $sqcup_p in M F_p$ is usually going to be impossible. There's just no guarantee they'll fit together in such a way as to smoothly vary between fibers.
In special cases we're able to choose $p mapsto F_p$ in a non-arbitrary way in order to prove that the particular vector bundle under question has an embedded line bundle.
answered 1 hour ago
goblingoblin
37.2k1159197
37.2k1159197
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3212960%2fwhy-doesnt-ever-smooth-vector-bundle-admits-a-line-bundle%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
How do you ensure that you make a choice of $F_p$ that "varies smoothly" with $p$? You need to be more precise how the trivialization comes from the restriction of the trivialization of $E$.
$endgroup$
– Jane Doé
2 hours ago
$begingroup$
Can you explain what trivialization you have in mind in more detail? (In attempting to do so, I suspect you may find the error yourself.)
$endgroup$
– Eric Wofsey
2 hours ago