Why not use the yoke to control yaw, as well as pitch and roll? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Did any aircraft ever use stick twist for rudder control?Why Pitch Trim Up/Down & Roll Left/Right switches on yoke or control stick?How to control yaw in stick aircraft?How is a sideslip maintained (aerodynamically)?Do aerodynamic forces and moments change aircraft pitch and yaw in the same way?In the early days of flight, were there any cockpit control schemes other than the modern one?Flight physics for a rollDo fly-by-wire fighter aircraft automatically reverse the direction of control surface deflections during a tailslide?Why does the A320 use the rudder for lateral control in mechanical law?Why can't the 737 MAX's horizontal stabilizer autotrim be cut out by control yoke inputs?Would throttle steering of a forward-swept-winged aircraft be possible?

Caught masturbating at work

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?

New Order #6: Easter Egg

After Sam didn't return home in the end, were he and Al still friends?

How to change the tick of the color bar legend to black

Nose gear failure in single prop aircraft: belly landing or nose-gear up landing?

Tips to organize LaTeX presentations for a semester

Why is a lens darker than other ones when applying the same settings?

What are the main differences between the original Stargate SG-1 and the Final Cut edition?

i2c bus hangs in master RPi access to MSP430G uC ~1 in 1000 accesses

Most effective melee weapons for arboreal combat? (pre-gunpowder technology)

Did any compiler fully use 80-bit floating point?

How can a team of shapeshifters communicate?

Why complex landing gears are used instead of simple,reliability and light weight muscle wire or shape memory alloys?

How do living politicians protect their readily obtainable signatures from misuse?

Moving a wrapfig vertically to encroach partially on a subsection title

Can you force honesty by using the Speak with Dead and Zone of Truth spells together?

How to ask rejected full-time candidates to apply to teach individual courses?

Can two people see the same photon?

Why shouldn't this prove the Prime Number Theorem?

Found this skink in my tomato plant bucket. Is he trapped? Or could he leave if he wanted?

Constant factor of an array

What initially awakened the Balrog?

Google .dev domain strangely redirects to https



Why not use the yoke to control yaw, as well as pitch and roll?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Did any aircraft ever use stick twist for rudder control?Why Pitch Trim Up/Down & Roll Left/Right switches on yoke or control stick?How to control yaw in stick aircraft?How is a sideslip maintained (aerodynamically)?Do aerodynamic forces and moments change aircraft pitch and yaw in the same way?In the early days of flight, were there any cockpit control schemes other than the modern one?Flight physics for a rollDo fly-by-wire fighter aircraft automatically reverse the direction of control surface deflections during a tailslide?Why does the A320 use the rudder for lateral control in mechanical law?Why can't the 737 MAX's horizontal stabilizer autotrim be cut out by control yoke inputs?Would throttle steering of a forward-swept-winged aircraft be possible?










1












$begingroup$


(Inspired by this question about rudder hand control on joystick-equipped aircraft.)



Most civilian fixed-wing aircraft (post-1987 Airbus airliners being the primary exceptions) use a yoke (essentially a steering wheel mounted on a vertical column that can swing back and forward) to control pitch (pushing the yoke forward pitches the nose down; pulling the yoke back pitches the nose up) and roll (rotating the yoke clockwise rolls the aircraft to the right; rotating the yoke counterclockwise rolls the aircraft to the left), but control yaw via a separate set of rudder pedals (pushing on the left-foot pedal yaws the nose to the left; pushing on the right-foot pedal yaws the nose to the right).



If the yoke were used to control yaw as well as pitch and roll, this would allow the pilot to make coordinated turns using just their hands, rather than having to remember to push with one of their feet at the same time, and would eliminate the risk of accidentally applying the brakes when steering on the ground.



A couple of possible ways for yoke-based rudder control suggest themselves; one would be to tilt the column from side to side (tilting the column left would yaw the nose to the left; tilting the column right would yaw the nose to the right), while another would be to push one of the yoke's horns forward while pulling the other back, rotating the yoke about its vertical axis (pushing the left horn forward and pulling the right horn back would yaw the nose to the right; pulling the left horn back and pushing the right horn forward would yaw the nose to the left).



Here's an illustration of what I've in mind:



Method of operation of three-axis yoke



Why don't any aircraft use the yoke to control all three axes, rather than just pitch and roll?










share|improve this question









$endgroup$







  • 1




    $begingroup$
    User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
    $endgroup$
    – user3528438
    4 hours ago















1












$begingroup$


(Inspired by this question about rudder hand control on joystick-equipped aircraft.)



Most civilian fixed-wing aircraft (post-1987 Airbus airliners being the primary exceptions) use a yoke (essentially a steering wheel mounted on a vertical column that can swing back and forward) to control pitch (pushing the yoke forward pitches the nose down; pulling the yoke back pitches the nose up) and roll (rotating the yoke clockwise rolls the aircraft to the right; rotating the yoke counterclockwise rolls the aircraft to the left), but control yaw via a separate set of rudder pedals (pushing on the left-foot pedal yaws the nose to the left; pushing on the right-foot pedal yaws the nose to the right).



If the yoke were used to control yaw as well as pitch and roll, this would allow the pilot to make coordinated turns using just their hands, rather than having to remember to push with one of their feet at the same time, and would eliminate the risk of accidentally applying the brakes when steering on the ground.



A couple of possible ways for yoke-based rudder control suggest themselves; one would be to tilt the column from side to side (tilting the column left would yaw the nose to the left; tilting the column right would yaw the nose to the right), while another would be to push one of the yoke's horns forward while pulling the other back, rotating the yoke about its vertical axis (pushing the left horn forward and pulling the right horn back would yaw the nose to the right; pulling the left horn back and pushing the right horn forward would yaw the nose to the left).



Here's an illustration of what I've in mind:



Method of operation of three-axis yoke



Why don't any aircraft use the yoke to control all three axes, rather than just pitch and roll?










share|improve this question









$endgroup$







  • 1




    $begingroup$
    User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
    $endgroup$
    – user3528438
    4 hours ago













1












1








1





$begingroup$


(Inspired by this question about rudder hand control on joystick-equipped aircraft.)



Most civilian fixed-wing aircraft (post-1987 Airbus airliners being the primary exceptions) use a yoke (essentially a steering wheel mounted on a vertical column that can swing back and forward) to control pitch (pushing the yoke forward pitches the nose down; pulling the yoke back pitches the nose up) and roll (rotating the yoke clockwise rolls the aircraft to the right; rotating the yoke counterclockwise rolls the aircraft to the left), but control yaw via a separate set of rudder pedals (pushing on the left-foot pedal yaws the nose to the left; pushing on the right-foot pedal yaws the nose to the right).



If the yoke were used to control yaw as well as pitch and roll, this would allow the pilot to make coordinated turns using just their hands, rather than having to remember to push with one of their feet at the same time, and would eliminate the risk of accidentally applying the brakes when steering on the ground.



A couple of possible ways for yoke-based rudder control suggest themselves; one would be to tilt the column from side to side (tilting the column left would yaw the nose to the left; tilting the column right would yaw the nose to the right), while another would be to push one of the yoke's horns forward while pulling the other back, rotating the yoke about its vertical axis (pushing the left horn forward and pulling the right horn back would yaw the nose to the right; pulling the left horn back and pushing the right horn forward would yaw the nose to the left).



Here's an illustration of what I've in mind:



Method of operation of three-axis yoke



Why don't any aircraft use the yoke to control all three axes, rather than just pitch and roll?










share|improve this question









$endgroup$




(Inspired by this question about rudder hand control on joystick-equipped aircraft.)



Most civilian fixed-wing aircraft (post-1987 Airbus airliners being the primary exceptions) use a yoke (essentially a steering wheel mounted on a vertical column that can swing back and forward) to control pitch (pushing the yoke forward pitches the nose down; pulling the yoke back pitches the nose up) and roll (rotating the yoke clockwise rolls the aircraft to the right; rotating the yoke counterclockwise rolls the aircraft to the left), but control yaw via a separate set of rudder pedals (pushing on the left-foot pedal yaws the nose to the left; pushing on the right-foot pedal yaws the nose to the right).



If the yoke were used to control yaw as well as pitch and roll, this would allow the pilot to make coordinated turns using just their hands, rather than having to remember to push with one of their feet at the same time, and would eliminate the risk of accidentally applying the brakes when steering on the ground.



A couple of possible ways for yoke-based rudder control suggest themselves; one would be to tilt the column from side to side (tilting the column left would yaw the nose to the left; tilting the column right would yaw the nose to the right), while another would be to push one of the yoke's horns forward while pulling the other back, rotating the yoke about its vertical axis (pushing the left horn forward and pulling the right horn back would yaw the nose to the right; pulling the left horn back and pushing the right horn forward would yaw the nose to the left).



Here's an illustration of what I've in mind:



Method of operation of three-axis yoke



Why don't any aircraft use the yoke to control all three axes, rather than just pitch and roll?







flight-controls yaw






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 5 hours ago









SeanSean

6,34632979




6,34632979







  • 1




    $begingroup$
    User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
    $endgroup$
    – user3528438
    4 hours ago












  • 1




    $begingroup$
    User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
    $endgroup$
    – user3528438
    4 hours ago







1




1




$begingroup$
User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
$endgroup$
– user3528438
4 hours ago




$begingroup$
User interface is the last thing you want to change on any product. It's like why are we still using the QWERT keyboard and why we cars still use steering wheels.
$endgroup$
– user3528438
4 hours ago










3 Answers
3






active

oldest

votes


















2












$begingroup$

The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).






share|improve this answer









$endgroup$




















    2












    $begingroup$

    Such designs do not work well when the rudder is required other than during turns.



    A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



    It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.






    share|improve this answer








    New contributor




    peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






    $endgroup$




















      1












      $begingroup$

      It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



      Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



      I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



      Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.






      share|improve this answer











      $endgroup$













        Your Answer








        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "528"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62555%2fwhy-not-use-the-yoke-to-control-yaw-as-well-as-pitch-and-roll%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



        After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



        Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



        Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



        The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



        The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).






        share|improve this answer









        $endgroup$

















          2












          $begingroup$

          The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



          After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



          Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



          Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



          The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



          The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).






          share|improve this answer









          $endgroup$















            2












            2








            2





            $begingroup$

            The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



            After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



            Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



            Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



            The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



            The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).






            share|improve this answer









            $endgroup$



            The modern control yoke is directly derived from the "joystick" control that became standard on aircraft in the days when Glenn Curtiss personally ran the company that was the main competitor to the Wright brothers.



            After inventing aileron control (the Wrights were still using wing warping at the time -- this was before 1910), Curtiss needed a way to control movement of the ailerons, and subsequently of the rudder. The original 1903 Wright Flyer had the wing warp controlled by sliding the pilot's platform (a flat surface, on which the pilot lay prone) right and left, and coupled the rudder, so that roll and yaw were inseparable. Curtiss decoupled them, and needed to add a third control -- and since he was also sitting upright, even in his first airplane, his feet were available.



            Running the elevators and ailerons on the control stick was obvious, and it was equally simple to put one's feet on a bar that directly operated the rudder -- and this layout became the standard almost instantly. Even the Wrights adopted it before they demonstrated their Flier to the Army.



            Over time, there have been a few examples of variations. Airplanes that brought back coupled rudder and aileron, like the Ercoupe, let the pilot fly with "feet flat on the floor" -- and it seems to me there was at least one design, from the biplane era, of a transport aircraft with rudder operated much the way you describe; a control wheel mounted on a joystick, with stick movement controlling roll, and wheel rotation controlling yaw.



            The fact this has only appeared in a very small number of designs suggests that, as noted in a comment, it's a bad idea to change something that's been long standardized -- yet, we have a good number of aircraft, ranging from sailplane to jet fighter and large transport, that use "sidestick" -- in which, in the transport case, the pilot in command actually flies with his left hand, while the copilot flies with his right. Joysticks continue in wide use as well, especially in smaller or higher performance aircraft, or those with ejection systems.



            The other, and I believe the main reason we don't see control schemes like what you describe is that it becomes impossible to maintain precise, separate control of roll and yaw. When the same pair of hands are doing both jobs, the brain will mix them together, or in trying not to, will reverse mix (leading to a forward slip or a skid, the latter widely considered very hazardous at low altitude and speed). If you have an aircraft in which it's difficult to avoid mixing either adverse or proverse rudder while applying aileron, it'll be difficult to land or take off in crosswinds, hard to maintain a precise final approach, and nearly impossible to fly high precision maneuvers (like air to air refueling or tight formations).







            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 4 hours ago









            Zeiss IkonZeiss Ikon

            3,557419




            3,557419





















                2












                $begingroup$

                Such designs do not work well when the rudder is required other than during turns.



                A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



                It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.






                share|improve this answer








                New contributor




                peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$

















                  2












                  $begingroup$

                  Such designs do not work well when the rudder is required other than during turns.



                  A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



                  It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.






                  share|improve this answer








                  New contributor




                  peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.






                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Such designs do not work well when the rudder is required other than during turns.



                    A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



                    It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.






                    share|improve this answer








                    New contributor




                    peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    $endgroup$



                    Such designs do not work well when the rudder is required other than during turns.



                    A typical situation would be the use of rudder to counter the p-factor (asymmetric turning tendency) on propeller aircraft. After take-off, one might need to apply a significant amount of rudder during climb at high-power and high-AOA.



                    It would be very inconvenient to have the yoke "tilted" or "twisted" during the climb, even when the aircraft is not turning at all.







                    share|improve this answer








                    New contributor




                    peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    share|improve this answer



                    share|improve this answer






                    New contributor




                    peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    answered 4 hours ago









                    peekaypeekay

                    3114




                    3114




                    New contributor




                    peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





                    New contributor





                    peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    peekay is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





















                        1












                        $begingroup$

                        It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



                        Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



                        I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



                        Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.






                        share|improve this answer











                        $endgroup$

















                          1












                          $begingroup$

                          It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



                          Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



                          I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



                          Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.






                          share|improve this answer











                          $endgroup$















                            1












                            1








                            1





                            $begingroup$

                            It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



                            Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



                            I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



                            Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.






                            share|improve this answer











                            $endgroup$



                            It's just a bad idea Sean. Believe me if you've done any flying you would NOT like a control column that you have to shove sideways, or a twisty yoke, for rudder as well as roll and pitch. Your feet are sitting there doing nothing anyway. And you need to be able to control it one handed so you can work the thrust levers or power levers or throttles with the other. How would you work such a column with one hand?



                            Plus, in any transport airplane with a yaw damper system you never touch the rudder pedals once airborne unless an engine quits. And if that happens you'll be glad you have your upper thigh muscles to the do the work of holding in rudder input for an extended period, and not your forearms already busy with 2 other jobs.



                            I'm imagining trying to hold a yoke pushed to the side following an engine failure on rotation, while also controlling pitch and roll with it, while my feet sit on the floor being useless... very unpleasant.



                            Where it might be viable is with a side stick FBW controller where the stick rotates for yaw, like a computer joystick. But even there, I'd rather have my feet do it.







                            share|improve this answer














                            share|improve this answer



                            share|improve this answer








                            edited 1 hour ago

























                            answered 2 hours ago









                            John KJohn K

                            25.9k13879




                            25.9k13879



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Aviation Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2faviation.stackexchange.com%2fquestions%2f62555%2fwhy-not-use-the-yoke-to-control-yaw-as-well-as-pitch-and-roll%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Invision Community Contents History See also References External links Navigation menuProprietaryinvisioncommunity.comIPS Community ForumsIPS Community Forumsthis blog entry"License Changes, IP.Board 3.4, and the Future""Interview -- Matt Mecham of Ibforums""CEO Invision Power Board, Matt Mecham Is a Liar, Thief!"IPB License Explanation 1.3, 1.3.1, 2.0, and 2.1ArchivedSecurity Fixes, Updates And Enhancements For IPB 1.3.1Archived"New Demo Accounts - Invision Power Services"the original"New Default Skin"the original"Invision Power Board 3.0.0 and Applications Released"the original"Archived copy"the original"Perpetual licenses being done away with""Release Notes - Invision Power Services""Introducing: IPS Community Suite 4!"Invision Community Release Notes

                                Canceling a color specificationRandomly assigning color to Graphics3D objects?Default color for Filling in Mathematica 9Coloring specific elements of sets with a prime modified order in an array plotHow to pick a color differing significantly from the colors already in a given color list?Detection of the text colorColor numbers based on their valueCan color schemes for use with ColorData include opacity specification?My dynamic color schemes

                                Tom Holland Mục lục Đầu đời và giáo dục | Sự nghiệp | Cuộc sống cá nhân | Phim tham gia | Giải thưởng và đề cử | Chú thích | Liên kết ngoài | Trình đơn chuyển hướngProfile“Person Details for Thomas Stanley Holland, "England and Wales Birth Registration Index, 1837-2008" — FamilySearch.org”"Meet Tom Holland... the 16-year-old star of The Impossible""Schoolboy actor Tom Holland finds himself in Oscar contention for role in tsunami drama"“Naomi Watts on the Prince William and Harry's reaction to her film about the late Princess Diana”lưu trữ"Holland and Pflueger Are West End's Two New 'Billy Elliots'""I'm so envious of my son, the movie star! British writer Dominic Holland's spent 20 years trying to crack Hollywood - but he's been beaten to it by a very unlikely rival"“Richard and Margaret Povey of Jersey, Channel Islands, UK: Information about Thomas Stanley Holland”"Tom Holland to play Billy Elliot""New Billy Elliot leaving the garage"Billy Elliot the Musical - Tom Holland - Billy"A Tale of four Billys: Tom Holland""The Feel Good Factor""Thames Christian College schoolboys join Myleene Klass for The Feelgood Factor""Government launches £600,000 arts bursaries pilot""BILLY's Chapman, Holland, Gardner & Jackson-Keen Visit Prime Minister""Elton John 'blown away' by Billy Elliot fifth birthday" (video with John's interview and fragments of Holland's performance)"First News interviews Arrietty's Tom Holland"“33rd Critics' Circle Film Awards winners”“National Board of Review Current Awards”Bản gốc"Ron Howard Whaling Tale 'In The Heart Of The Sea' Casts Tom Holland"“'Spider-Man' Finds Tom Holland to Star as New Web-Slinger”lưu trữ“Captain America: Civil War (2016)”“Film Review: ‘Captain America: Civil War’”lưu trữ“‘Captain America: Civil War’ review: Choose your own avenger”lưu trữ“The Lost City of Z reviews”“Sony Pictures and Marvel Studios Find Their 'Spider-Man' Star and Director”“‘Mary Magdalene’, ‘Current War’ & ‘Wind River’ Get 2017 Release Dates From Weinstein”“Lionsgate Unleashing Daisy Ridley & Tom Holland Starrer ‘Chaos Walking’ In Cannes”“PTA's 'Master' Leads Chicago Film Critics Nominations, UPDATED: Houston and Indiana Critics Nominations”“Nominaciones Goya 2013 Telecinco Cinema – ENG”“Jameson Empire Film Awards: Martin Freeman wins best actor for performance in The Hobbit”“34th Annual Young Artist Awards”Bản gốc“Teen Choice Awards 2016—Captain America: Civil War Leads Second Wave of Nominations”“BAFTA Film Award Nominations: ‘La La Land’ Leads Race”“Saturn Awards Nominations 2017: 'Rogue One,' 'Walking Dead' Lead”Tom HollandTom HollandTom HollandTom Hollandmedia.gettyimages.comWorldCat Identities300279794no20130442900000 0004 0355 42791085670554170004732cb16706349t(data)XX5557367